Advertisement

Mortality from internal and external radiation exposure in a cohort of male German uranium millers, 1946–2008

  • M. KreuzerEmail author
  • F. Dufey
  • D. Laurier
  • D. Nowak
  • J. W. Marsh
  • M. Schnelzer
  • M. Sogl
  • L. Walsh
Original Article

Abstract

Purpose

To examine exposure–response relationships between ionizing radiation and several mortality outcomes in a subgroup of 4,054 men of the German uranium miner cohort study, who worked between 1946 and 1989 in milling facilities, but never underground or in open pit mines.

Methods

Mortality follow-up was from 1946 to 2008, accumulating 158,383 person-years at risk. Cumulative exposure to radon progeny in working level months (WLM) (mean = 8, max = 127), long-lived radionuclides from uranium ore dust in kBqh/m3 (mean = 3.9, max = 132), external gamma radiation in mSv (mean = 26, max = 667) and silica dust was estimated by a comprehensive job–exposure matrix. Internal Poisson regression models were applied to estimate the linear excess relative risk (ERR) per unit of cumulative exposure.

Results

Overall, a total of 457, 717 and 111 deaths occurred from malignant cancer, cardiovascular diseases and non-malignant respiratory diseases, respectively. Uranium ore dust and silica dust were not associated with mortality from any of these disease groups. A statistically significant relationship between cumulative radon exposure and mortality from all cancers (ERR/100 WLM = 1.71; p = 0.02), primarily due to lung cancer (n = 159; ERR/100 WLM = 3.39; p = 0.05), was found. With respect to cumulative external gamma radiation, an excess of mortality of solid cancers (n = 434; ERR/Sv = 1.86; p = 0.06), primarily due to stomach cancer (n = 49, ERR/Sv = 10.0; p = 0.12), was present.

Conclusion

The present findings show an excess mortality from lung cancer due to radon exposure and from solid cancers due to external gamma radiation in uranium millers that was not statistically significant. Exposure to uranium was not associated with any cause of death, but absorbed organ doses were estimated to be low.

Keywords

Radiation Uranium Risk Epidemiology Cohort study 

Notes

Acknowledgments

This work was partially funded by the EC (EURATOM FP7 Grant Number 8192; DoReMi Cure project).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR) (2013) Toxicological Profile for Uranium (Atlanta, GA: US) Department of Health and Human Service. Available at www.atsdr.cdc.gov/toxprofiles/tp150.html, Feb 2013
  2. Anderson JL, Daniels RD, Fleming DA, Tseng CY (2012) Exposure assessment for a cohort of workers at a former uranium processing facility. J Expo Sci Environ Epidemiol 22:324–330CrossRefGoogle Scholar
  3. Boice JD, Cohen SS, Mumma MT, Chadda B, Blot WJ (2008) A cohort of uranium millers and miners of Grants, New Mexico, 1979–2005. J Radiol Prot 28:303–325CrossRefGoogle Scholar
  4. Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II—the design and analysis of cohort studies. Scientific publication 82, IARC, LyonGoogle Scholar
  5. Canu IG, Ellis ED, Tirmarche M (2008) Cancer risk in nuclear workers occupationally exposed to uranium—emphasis on internal exposure. Health Phys 94:1–17CrossRefGoogle Scholar
  6. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416CrossRefGoogle Scholar
  7. Dahmann D, Bauer HD, Stoyke G (2008) Retrospective exposure assessment for respirable and inhalable dust, crystalline silica and arsenic in the former German uranium mines of SAG/SDAG Wismut. Int Arch Occup Environ Health 81:949–958CrossRefGoogle Scholar
  8. Dupree-Ellis E, Watkins J, Ingle JN, Phillips J (2000) External radiation exposure and mortality in a cohort of uranium processing workers. Am J Epidemiol 152:91–95CrossRefGoogle Scholar
  9. Guseva Canu I, Garsi JP (2012) Does uranium induce circulatory diseases? First results of a French cohort of uranium workers. Occup Environ Med 69:404–409CrossRefGoogle Scholar
  10. Guseva Canu I, Cardis E, Metz-Flamant C, Caër-Lorho S, Auriol B, Wild P, Laurier D, Tirmarche M (2010) French cohort of the uranium processing workers: mortality pattern after 30-year follow-up. Int Arch Occup Environ Health 83:301–308CrossRefGoogle Scholar
  11. Guseva Canu I, Jacob S, Cardis E et al (2011) Uranium carcinogenicity in humans might depend on the physical and chemical nature of uranium and its isotopic composition: results from pilot epidemiological study of French nuclear workers. Cancer Causes Control 22:1563–1573CrossRefGoogle Scholar
  12. HVBG, BBG (2005) Belastung durch ionisierende Strahlung, Staub und Arsen im Uranerzbergbau der ehemaligen DDR (Version 08/2005). Gera: Bergbau BG (BBG), St. Augustin: Hauptverband der gewerblichen Berufsgenossenschaften (HVBG), 2005 (CD-Rom)Google Scholar
  13. IARC (2012) Radiation: a review of human carcinogens. IARC monographs on the evaluation of carcinogenic risks to humans, vol 100 D. IARC, LyonGoogle Scholar
  14. Kreuzer M, Schnelzer M, Tschense A, Walsh L, Grosche B (2010) Cohort profile: the German uranium miners cohort study (WISMUT cohort), 1946–2003. Int J Epidemiol 39:980–987CrossRefGoogle Scholar
  15. Kreuzer M, Dufey F, Sogl M, Schnelzer M, Walsh L (2013) External gamma radiation and mortality from cardiovascular diseases in the German WISMUT uranium miners cohort study, 1946–2008. Radiat Environ Biophys 52:37–46CrossRefGoogle Scholar
  16. Laurier D, Guseva Canu I, Baatout S et al (2012) DOREMI workshop on multidisciplinary approaches to evaluating cancer risk associations with low-dose internal contamination. Radioprotection 47:119–148CrossRefGoogle Scholar
  17. Lehmann F, Hambeck L, Linkert KH et al (1998) Belastung durch ionisierende Strahlung im Uranerzbergbau der ehemaligen DDR. Hauptverband der gewerblichen Berufsgenossenschaften: Sankt AugustinGoogle Scholar
  18. Marsh JW, Bessa Y, Birchall A, Blanchardon E, Hofmann W, Nosske D, Tomasek L (2008) Dosimetric models used in the alpha-risk project to quantify exposure of uranium miners to radon gas and its progeny. Radiat Prot Dosimetry 130:101–106CrossRefGoogle Scholar
  19. Marsh JW, Gregoratto D, Hofmann W, Hofmann W, Karcher K, Nosske D, Tomásek L (2012) Dosimetric calculations for uranium miners for epidemiological studies. Radiat Prot Dosimetry 149:371–383CrossRefGoogle Scholar
  20. Pinkerton LE, Bloom TF, Hein MJ, Ward EM (2004) Mortality among a cohort of uranium mill workers: an update. Occup Environ Med 61:57–64CrossRefGoogle Scholar
  21. Preston DL, Lubin JH, Pierce DA et al (1998) Epicure, release 2.10. Hirosoft, SeattleGoogle Scholar
  22. Rittgen W, Becker N (2000) SMR analysis of historical follow-up studies with missing death certificates. Biometrics 56:1164–1169CrossRefGoogle Scholar
  23. Ritz B (1999) Radiation exposure and cancer mortality in uranium processing workers. Epidemiology 10:531–581CrossRefGoogle Scholar
  24. Schnelzer M, Hammer GP, Kreuzer M, Tschense M, Grosche B (2010) Accounting for smoking in the radon-related lung cancer risk among German uranium miners: results of a nested case-control study. Health Phys 98:20–28CrossRefGoogle Scholar
  25. Silver SR, Bertke SJ, Hein MJ et al (2013) Mortality and ionising radiation exposures among workers employed at the Fernald Feed Materials Production Centre (1951–1985). Occup Environ Med 70:453–463CrossRefGoogle Scholar
  26. Sogl M, Taeger D, Pallapies D, Brüning T, Dufey F, Schnelzer M, Straif K, Walsh L, Kreuzer M (2012) Quantitative relationship between silica exposure and lung cancer mortality in German uranium miners, 1946–2003. Br J Cancer 107:1188–1194CrossRefGoogle Scholar
  27. Souidi M, Tissandie E, Racine R et al (2009) Uranium: properties and biological effects after internal contamination. Ann Biol Clin 67:23–38 (in French)Google Scholar
  28. Walsh L, Tschense A, Schnelzer M, Dufey F, Grosche B, Kreuzer M (2010) The influence of radon exposures on lung cancer mortality in German uranium miners, 1946–2003. Radiat Res 173:79–90CrossRefGoogle Scholar
  29. Wismut (2010) GmbH: Die Chronik der Wismut. Hrsg: Wismut GmbH. CDGoogle Scholar
  30. Zablotska LB, Lane RSD, Frost SE (2013) Mortality (1950–1999) and cancer incidence (1969–1999) of workers in the Port Hope cohort study exposed to a unique combination of radium, uranium and γ-ray doses. BMJ Open. doi: 10.1136/bmjopen-2012-002159

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Kreuzer
    • 1
    Email author
  • F. Dufey
    • 1
  • D. Laurier
    • 2
  • D. Nowak
    • 3
  • J. W. Marsh
    • 4
  • M. Schnelzer
    • 1
  • M. Sogl
    • 1
  • L. Walsh
    • 1
  1. 1.Department of Radiation Protection and HealthFederal Office for Radiation ProtectionNeuherbergGermany
  2. 2.Institute for Radiological Protection and Nuclear Safety (IRSN)ParisFrance
  3. 3.Institute for Occupational Medicine and Environmental MedicineLMU MünchenMunichGermany
  4. 4.Public Health EnglandChilton, Didcot, OxfordshireUK

Personalised recommendations