Nanoparticle dermal absorption and toxicity: a review of the literature

  • Matteo CroseraEmail author
  • Massimo Bovenzi
  • Giovanni Maina
  • Gianpiero Adami
  • Caterina Zanette
  • Chiara Florio
  • Francesca Filon Larese
Review Article



Nanotechnologies are among the fastest growing areas of scientific research and have important applications in a wide variety of fields. The data suggest that in the future workers and consumers exposed to nanoparticles will significantly increase.

Dermal absorption and toxicity of nanoparticles

At now there are gaps in understanding about the human and environmental risk that manufactured nanoparticles pose for occupational exposed people and for consumers. There is a need for assessing the health and environmental impacts, the nanoparticles life cycle, the human exposure routes, the behavior of nanoparticles in the body, and the risk for workers. Possible routes of entry into the body include inhalation, absorption through the skin or digestive tract, injection, and absorption or implantation for drugs delivery systems. In particular, dermal absorption and skin penetration of nanoparticles needs a better evaluation because few and contradictory data are present in the literature, mainly on titanium dioxide.


There are limited data on carbon-based nanoparticles and very few data on other metal nanoparticles increasingly used in industry. The article reviews the literature on the percutaneous absorption of nanoparticles and their effect on skin.


Skin absorption Nanoparticles Review 


  1. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99:53–62PubMedCrossRefGoogle Scholar
  2. Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, Marano F, Maynard RL, Mudway I, Nel A, Sioutas C, Smith S, Baeza-Squiban A, Cho A, Duggan S, Froines J (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report an consensus statement. Inhalation Toxicol 20:75–99CrossRefGoogle Scholar
  3. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela A (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712PubMedGoogle Scholar
  4. Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114PubMedCrossRefGoogle Scholar
  5. Bennat C, Müller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci 22:271–283PubMedCrossRefGoogle Scholar
  6. Bernstein IA, Vaughan FL (1999) Cultured keratinocytes in in vitro dermatotoxicological investigation: a review. J Toxicol Environ Health B 2:1–30CrossRefGoogle Scholar
  7. Berry CC, Charles S, Wells S, Dalby MJ, Curtis ASG (2004) The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharmac 269:211–225CrossRefGoogle Scholar
  8. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679PubMedCrossRefGoogle Scholar
  9. Bronaugh RL (2008) Skin penetration of nanoparticles. In: Proceeding of PPP2008, Perspectives in percutaneous penetration, La Grande Motte 25–29th of March 2008, p 1Google Scholar
  10. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348PubMedGoogle Scholar
  11. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12PubMedCrossRefGoogle Scholar
  12. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327PubMedCrossRefGoogle Scholar
  13. Cross SE, Innes B, Roberts M, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154PubMedCrossRefGoogle Scholar
  14. Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448–2464PubMedCrossRefGoogle Scholar
  15. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22PubMedCrossRefGoogle Scholar
  16. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5PubMedCrossRefGoogle Scholar
  17. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90PubMedCrossRefGoogle Scholar
  18. EPA (2007) Nanotechnology white paper. Prepared for the U.S. Environmental Protection Agency by members of the Nanotechnology Workgroup, a group of EPA’s Science Policy Council Science Policy Council U.S. Environmental Protection Agency Washington, DCGoogle Scholar
  19. Escobar-Chávez JJ, Merino-Sanjuán V, López-Cervantes M, Urban-Morlan Z, Piñón-Segundo E, Quintanar-Guerrero D, Ganem-Quintanar A (2008) The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharmaceut Sci 11:104–130Google Scholar
  20. Fiserova-Bergerova V, Pierce JT, Droz PO (1990) Dermal absorption potential of industrial chemicals: criteria for skin notation. Am J Ind Med 17:617–635PubMedCrossRefGoogle Scholar
  21. Franz TJ (1975) On the relevance of in vitro data. J Invest Dermatol 93:633–640Google Scholar
  22. Gamer AO, Leibold E, van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20:301–307PubMedCrossRefGoogle Scholar
  23. Geiser M, Schurch S, Gehr P (2003) Influence of surface chemistry and topography of particles on their immersion into the lung’s surface-lining layer. J Appl Physiol 94:1793–1801PubMedGoogle Scholar
  24. Geller MD, Kim S, Misra C, Sioutas C, Olson BA, Marple VA (2002) A methodology for measuring size-dependent chemical composition of ultrafine particles. Aerosol Sci Technol 36:748–762CrossRefGoogle Scholar
  25. Geys J, Coenegrachts L, Vercammen J, Engelborghs Y, Nemmar A, Nemery B, Hoet PH (2006) In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett 160:218–226PubMedCrossRefGoogle Scholar
  26. Geys J, Nemery B, Hoet PH (2007) Optimisation of culture conditions to develop an in vitro pulmonary permeability model. Toxicol In Vitro 21:1215–1219PubMedCrossRefGoogle Scholar
  27. Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157Google Scholar
  28. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818–1825PubMedGoogle Scholar
  29. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172PubMedCrossRefGoogle Scholar
  30. Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials—the clonogenic assay. Toxicol Lett 174:49–60PubMedCrossRefGoogle Scholar
  31. Hoet PHM, Brüske-Hohfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12CrossRefGoogle Scholar
  32. Kertész Zs, Szikszai Z, Gontier E, Moretto P, Surlève-Bazeille JE, Kiss B, Juhász I, Hunyadi J, Kiss AZ (2005) Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts. Nucl Instr Meth Phys Res B 231:280–285CrossRefGoogle Scholar
  33. Kielhorn J, Melching-Kollmuß S, Mangelsdorf I (2006) World Health Organization (WHO), Environmental Health Criteria 235 DERMAL ABSORPTIONGoogle Scholar
  34. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97PubMedCrossRefGoogle Scholar
  35. Kiss B, Biró T, Czifra G, Tóth BI, Kertész Zs, Szikszai Z, Kiss AZ, Juhász I, Zouboulis CC, Hunyadi J (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol. doi: 10.1111/j.1600-0625.2007.00683.x
  36. Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758:404–412PubMedCrossRefGoogle Scholar
  37. Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide in sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256PubMedGoogle Scholar
  38. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, Weiß B, Schaefer UF, Lehr CM, Wepf R, Sterry W (2007) Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 66:59–164Google Scholar
  39. Lam CW, James JT, McCluskey R, Hunter RL (2004a) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134PubMedCrossRefGoogle Scholar
  40. Lam PK, Chan ES, Ho WS, Liew CT (2004b) In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br J Biomed Sci 61:125–127PubMedGoogle Scholar
  41. Larese Filon F, Boeninger M, Maina G, Adami G, Spinelli P, Damian A (2006) Skin absorption of inorganic lead and the effects of skin cleansers. J Occup Environ Med 48:692–699CrossRefGoogle Scholar
  42. Larese Filon F, Gianpietro G, Venier M, Maina G, Renzi N (2007) In vitro percutaneous absorption of metal compounds. Toxicol Lett 170:49–56CrossRefGoogle Scholar
  43. Larese Filon F, D’Agostin F, Bovenzi M, Crosera M, Adami G, Romano C, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37CrossRefGoogle Scholar
  44. Leaper DJ (2006) Silver dressing: their role in wound management. Int Wound J 3:282–294PubMedCrossRefGoogle Scholar
  45. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163PubMedCrossRefGoogle Scholar
  46. Liu Y, Meyer-Zaika W, Franzka S, Schmid G, Tsoli M, Kuhn H (2003) Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew Chem Int Ed 42:2853–2857CrossRefGoogle Scholar
  47. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125PubMedCrossRefGoogle Scholar
  48. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes. Nano Lett 5:1676–1684PubMedCrossRefGoogle Scholar
  49. Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and mineral sunscreen. Skin Pharmacol Physiol 20:10–20PubMedCrossRefGoogle Scholar
  50. Menzel F, Reinert T, Vogt J, Butz T (2004) Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instr Methods Phys Res B 219–220:82–86CrossRefGoogle Scholar
  51. Midander K, Wallinder IO, Leygraf C (2007) In vitro studies of copper release from powder particles in synthetic biological media. Environ Pollut 145:51–59PubMedCrossRefGoogle Scholar
  52. Moger J, Johnston BD, Tyler CR (2008) Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Optic Exp 16:3408–3419CrossRefGoogle Scholar
  53. Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078CrossRefGoogle Scholar
  54. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005a) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384PubMedCrossRefGoogle Scholar
  55. Monteiro-Riviere NA, Wang YY, Hong SM, Inman AO, Nemanich RJ, Tan J (2005b) Proteomic analysis of nanoparticle exposure in human keratinocyte cell culture. Toxicology 84:2183Google Scholar
  56. Muangman P, Chuntrasakul C, Silthram S, Suvanchote S, Benjathanung R, Kittidacha S, Rueksomtawin S (2006) Comparison of efficacy of 1% silver sulfadiazine and Acticoat for treatment of partial-thickness burn wounds. J Med Assoc Thai 89:953–958PubMedGoogle Scholar
  57. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231PubMedGoogle Scholar
  58. NANODERM (2007) Quality of skin as a barrier to ultra-fine particles. Final Report. (Project Number: QLK4-CT-2002-02678)
  59. Nasterlack M, Zober A, Oberlinner C (2008) Considerations on occupational medical surveillance in employees handling nanoparticles. Int Arch Occup Environ Health 81:721–726PubMedCrossRefGoogle Scholar
  60. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  61. Nielsen JB, Grandjean P (2004) Criteria for skin notation in different countries. Am J Ind Med 45:275–280PubMedCrossRefGoogle Scholar
  62. Nielsen JB, Nielsen F, Sørensen JA (2007) Defense against dermal exposures is only skin deep: significantly increased penetration through slightly damaged skin. Arch Dermatol Res 299:423–431PubMedCrossRefGoogle Scholar
  63. NIOSH, National Institute for Occupational Safety and Health (2007) Progress toward safe nanotechnology in the workplace—a report from the NIOSH Nanotechnology Research Center. DHHS (NIOSH) Pubblication No 2007-123, available on line:
  64. Ntziachristos L, Ning Z, Geller MD, Sheesley RJ, Schauer JJ, Sioutas C (2007) Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmos Environ 41:5684–5696CrossRefGoogle Scholar
  65. Oberdörster G, Oberdörsters E, Oberdörster J (2005a) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedGoogle Scholar
  66. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H and A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005b) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol 2:8Google Scholar
  67. Paddle-Ledinek JE, Nasa Z, Cleland HJ (2006) Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg 117:110S–118SPubMedCrossRefGoogle Scholar
  68. Pakkanen TA, Kerminen VM, Korhonen CH, Hillamo RE, Aarnio P, Koskentalo T, Maenhaut W (2001) Urban and rural ultrafine (PM0.1) particles in the Helsinki area. Atmos Environ 35:4593–4607CrossRefGoogle Scholar
  69. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP (2007) The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958PubMedCrossRefGoogle Scholar
  70. Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773PubMedCrossRefGoogle Scholar
  71. Poon VK, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30:140–147PubMedCrossRefGoogle Scholar
  72. Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112APubMedCrossRefGoogle Scholar
  73. Rotoli BM, Bussolati O, Bianchi MG, Barilli A, Balasubramanian C, Bellucci S, Bergamaschi E (2008) Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178:95–102PubMedCrossRefGoogle Scholar
  74. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7:155–160PubMedCrossRefGoogle Scholar
  75. Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA (2008) Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles. Toxicol In Vitro 22:491–497PubMedCrossRefGoogle Scholar
  76. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165PubMedCrossRefGoogle Scholar
  77. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153PubMedCrossRefGoogle Scholar
  78. Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R, Barrera EV, Rice-Ficht AC, Wilson BL, Ramesh GT (2007) Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ foreskin cells. J Nanosci Nanotechnol 7:584–592PubMedGoogle Scholar
  79. Sartorelli P, Ahlers HW, Alanko K, Chen-Peng C, Cherrie JW, Drexler H, Kezic S, Johanson G, Larese Filon F, Maina G, Montomoli L, Nielsen JB (2007) How to improve skin notation. Position paper from a workshop. Regul Toxicol Pharmacol 49:301–307PubMedCrossRefGoogle Scholar
  80. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887CrossRefGoogle Scholar
  81. Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595PubMedCrossRefGoogle Scholar
  82. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006a) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142PubMedCrossRefGoogle Scholar
  83. Sayes CM, Wahi R, Preetha AK, Liu Y, Jennifer LW, Kevin DA, David BW, Vicki LC (2006b) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185PubMedCrossRefGoogle Scholar
  84. SCCP, Scientific Committee on Consumer Products (2007) Safety of nanomaterials in cosmetic products. Available online dated 19 June 2007:
  85. Scheuplein RJ (1967) Mechanisms of percutaneous absorption, II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48:79–88PubMedGoogle Scholar
  86. Schulte PA, Geraci C, Zumwalde R, Hoover M, Kuempel E (2008) Occupational risk management of engineered nanoparticles. J Occup Environ Hygiene 5:239–249CrossRefGoogle Scholar
  87. Schulz J, Hohenberg H, Pflücker F, Gartner E, Will T, PfeiVer S, Wepf R, Wendel V, Gers-Barlag H, Wittern KP (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl. 1):S157–S163PubMedCrossRefGoogle Scholar
  88. Serpone N, Salinaro A, Emeline A (2001) Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA. Efforts to limit DNA damage by particle surface modification. In: Murphy CJ (ed) Nanoparticles & nanostructured surfaces—novel reporters with biological applications. Proc SPIE 4258:86–98Google Scholar
  89. Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H, Morita T (2006) Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol 34:949–957PubMedCrossRefGoogle Scholar
  90. Shvedova AA, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandlelsman V, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of cytotoxicity using human keratinocytes cells. J Toxicol Environ Health 66:1909–1926CrossRefGoogle Scholar
  91. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708PubMedCrossRefGoogle Scholar
  92. Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K (2008) In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces 65:1–10PubMedCrossRefGoogle Scholar
  93. Supp AP, Neely AN, Supp DM, Warden GD, Boyce ST (2005) Evaluation of cytotoxicity and antimicrobial activity of Acticoat burn dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J Burn Care Rehabil 26:238–246PubMedGoogle Scholar
  94. Tan MH, Commens CA, Burnett L, Snitch PJ (1996) A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37:185–187PubMedCrossRefGoogle Scholar
  95. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136PubMedCrossRefGoogle Scholar
  96. The Royal Society & the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. 29 JulyGoogle Scholar
  97. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212PubMedCrossRefGoogle Scholar
  98. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208PubMedGoogle Scholar
  99. Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60:648–652PubMedCrossRefGoogle Scholar
  100. Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G (2005) Cellular uptake and toxicity of Au55 clusters. Small 1:841–844PubMedCrossRefGoogle Scholar
  101. Wamer WG, Yin JJ, Wei RR (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med 23:851–858PubMedCrossRefGoogle Scholar
  102. Witzmann FA, Monteiro-Riviere NA (2006) Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine 2:158–168PubMedGoogle Scholar
  103. Woodrow Wilson International Center for Scholars (2007) Nanotechnology Consumer Products Inventory. Available:
  104. Wright JB, Lam K, Buret AG, Olson ME, Burrell RE (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 10:141–151PubMedCrossRefGoogle Scholar
  105. Zhang LW, Zeng L, Barron AR, Monteiro-Riviere NA (2007) Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 26:103–113PubMedCrossRefGoogle Scholar
  106. Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Matteo Crosera
    • 1
    Email author
  • Massimo Bovenzi
    • 2
  • Giovanni Maina
    • 3
  • Gianpiero Adami
    • 1
  • Caterina Zanette
    • 4
  • Chiara Florio
    • 4
  • Francesca Filon Larese
    • 2
  1. 1.Dipartimento di Scienze ChimicheUniversità di TriesteTriesteItaly
  2. 2.UCO Medicina del Lavoro, Dipartimento di Scienze di Medicina PubblicaUniversità di TriesteTriesteItaly
  3. 3.Laboratorio di Tossicologia Industriale, CTOUniversità di TorinoTorinoItaly
  4. 4.Dipartimento di Scienze della VitaUniversità di TriesteTriesteItaly

Personalised recommendations