Longitudinal study on potential neurotoxic effects of aluminium: II. Assessment of exposure and neurobehavioral performance of Al welders in the automobile industry over 4 years

  • Ernst Kiesswetter
  • M. Schäper
  • M. Buchta
  • K. H. Schaller
  • B. Rossbach
  • T. Kraus
  • S. Letzel
Original Article



This is the second of two parallel longitudinal studies investigating Al exposure and neurobehavioral health of Al welders over 4 years. While the first published study in the trail and truck construction industry examined the neurobehavioral development of Al welders from age 41–45 in the group mean (Kiesswetter et al. in Int Arch Occup Environ Health 81:41–67, 2007), the present study in the automobile industry followed the development from 35 to 39. Although no conspicuous neurobehavioral developments were detected in the first study, which furthermore exhibited the higher exposure, it cannot be excluded that exposure effects appear in earlier life and exposure stages.


The longitudinal study is based on a repeated measurement design comprising 4 years with three measurements in 2 years intervals. 92 male Al welders in the automobile industry were compared with 50 non-exposed construction workers of the same industry and of similar age. The repeated measurements included total dust in air, and Al pre- and post-shift plasma and urine samples. Neurobehavioral methods comprised symptoms, verbal intelligence, logic thinking, psychomotor behavior, memory, and attention. The computer aided tests came from the Motor Performance Series and the European Neurobehavioral Evaluation System. The courses of neurobehavioral changes were analyzed with multivariate covariance-analytical methods considering the covariates age, indicators of ‘a priori’ intelligence differences (education or markers of ‘premorbid’ intelligence), and alcohol consumption (carbohydrate-deficient transferrin in plasma). Additionally, the interrelationship, reliability and validity of biomonitoring measures were examined.


The mean environmental dust load during welding, 0.5–0.8 mg/m3, and the mean internal load of the welders (pre-shift: 23–43 μg Al/g creatinine in urine; 5–9 μg Al/l plasma) were significantly lower than in the parallel study. Under low exposure, the stability of biomonitoring measures was reduced, but the Al load differed significantly between Al welders and referents. It could not be shown that the development of neurobehavioral performances over the 4-year period differed between both groups. Mainly, markers of premorbid intelligence and age were related to neurobehavioral performance differences but not Al exposure.


The biomonitoring and neurobehavioral results are in line with the results of the first published study. The repeated measurement models of both studies showed no adverse neurobehavioral effects of Al welding. A modular lifetime-oriented research concept is outlined aiming at the investigation of sequential periods of exposure life with special focus on the biologically most sensitive phases like first exposure and old age.


Aluminium welders Biomonitoring Neurobehavioral performance Longitudinal study 


  1. Akila R, Stollery BT, Riihimäki V (1999) Decrements in cognitive performance in metal inert gas welders exposed to aluminium. Occup Environ Med 56:632–639. doi:10.1136/oem.56.9.632 CrossRefGoogle Scholar
  2. Angerer J, Schaller KH (1982) Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe, Bd. 2 Analysen in Biologischem Material, 6. Lieferung (in German). Wiley, WeinheimGoogle Scholar
  3. Bast-Pettersen R, Skaug V, Ellingsen D, Thomassen Y (2000) Neurobehavioral performance in aluminium welders. Am J Ind Med 37:184–192. doi:10.1002/(SICI)1097-0274(200002)37:2<184::AID-AJIM4>3.0.CO;2-O CrossRefGoogle Scholar
  4. Batty GD, Deary IJ, Gottfredson LS (2007) Premorbid (early life) IQ and later mortality risk: systematic review. Ann Epidemiol 17:278–288CrossRefGoogle Scholar
  5. Baydar T, Nagymajtenyi L, Isimer A, Sahin G (2005) Effect of folic acid supplementation on aluminum accumulation in rats. Nutrition 21:406–410CrossRefGoogle Scholar
  6. BGI 616 (2005) BG-Information 616. Beurteilung der Gefährdung durch Schweißrauche. Vereinigung der Metall-Berufsgenossenschaften (ed). Carl Heymanns Verlag KG, KölnGoogle Scholar
  7. Bolla KI (1991) Neuropsychological assessment for detecting adverse effects of volatile organic compounds on the central nervous system. Environ Health Perspect 95:93–98. doi:10.2307/3431113 CrossRefGoogle Scholar
  8. Bonnini S, Corain L, Munaò F, Salmaso L (2006) Neurocognitive effects in welders exposed to aluminium: an application of the NPC test and NPC ranking methods. Stat Methods Appl 15:191–208. doi:10.1007/s10260-006-0019-3 CrossRefGoogle Scholar
  9. Buchta M, Kiesswetter E, Otto A, Schaller KH, Seeber A, Hilla W, Windorfer K, Stork J, Kuhlmann A, Gefeller O, Letzel S (2003) Longitudinal study examining the neurotoxicity of occupational exposure to aluminium-containing welding fumes. Int Arch Occup Environ Health 76:539–548. doi:10.1007/s00420-003-0450-9 CrossRefGoogle Scholar
  10. Buchta M, Kiesswetter E, Schäper M, Zschiesche W, Schaller KH, Kuhlmanna A, Letzel S (2005) Neurotoxicity of exposures to aluminium welding fumes in the truck trailer construction industry. Environ Toxicol Pharmacol 19:677–685. doi:10.1016/j.etap.2004.12.036 CrossRefGoogle Scholar
  11. DFG (2007) Deutsche Forschungsgemeinschaft. MAK- und BAT-Wert-Liste 2007 (List of MAK and BAT values 2007). In: Maximum allowable concentrations and biological tolerance values at the workplace. Wiley, WeinheimGoogle Scholar
  12. El-Demerdash FM (2004) Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium. J Trace Elem Med Biol 18:113–121. doi:10.1016/j.jtemb.2004.04.001 CrossRefGoogle Scholar
  13. Fleischer M, Schaller KH (1999) Aluminium. In: Angerer J, Schaller KH (eds) Analysis of hazardous substances in biological materials, Deutsche Forschungsgemeinschaft, vol. 6. Wiley, WeinheimGoogle Scholar
  14. Gilioli R (1993) EURONEST: a concerted action of the European community for the study of organic solvents neurotoxicity. Environ Res 62:89–98. doi:10.1006/enrs.1993.1093 CrossRefGoogle Scholar
  15. Giorgianni C, Faranda M, Brecciaroli R, Beninato G, Saffioti G, Muraca G, Congia P, Catanoso R, Agostani G, Abbate C (2003) Cognitive disorders among welders exposed to aluminium. G Ital Med Lav Ergon 25(Suppl):102–103Google Scholar
  16. Gitelman HJ, Alderman FR, Kurs-Lasky M, Rockette HE (1995) Serum and urinary aluminium levels of workers in the aluminium industry. Ann Occup Hyg 39:181–191Google Scholar
  17. Hänninen H, Matikainen E, Kovala T, Valkonen S, Riihimäki V (1994) Internal load of aluminium and the central nervous system function of aluminium welders. Scand J Work Environ Health 20:279–285Google Scholar
  18. Heller KA, Kratzmeier H, Lengfelder A (1988) Matritzen-Test-Manual zu den Standard Progressive Matrices von J.C. Raven. Beltz Test, GöttingenGoogle Scholar
  19. Hogstedt C, Andersson K, Hane M (1984) A questionnaire approach to the monitoring of early disturbances in central nervous functions. In: Aitio A, Riihimäki V, Vaninio H (eds) Biological monitoring and surveillance of workers exposed to chemicals. Hemisphere, Washington, pp 275–287Google Scholar
  20. Ihrig A, Triebig G, Dietz MC (2001) Evaluation of a modified German version of the Q16 questionnaire for neurotoxic symptoms in workers exposed to solvents. Occup Environ Med 58:19–23. doi:10.1136/oem.58.1.19 CrossRefGoogle Scholar
  21. Iregren A, Sjögren B, Gustafsson K, Hagman M, Nylen L, Frech W, Andersson M, Ljunggren KG, Wennberg A (2001) Effects on the nervous system in different groups of workers exposed to aluminium. Occup Environ Med 58:453–460. doi:10.1136/oem.58.7.453 CrossRefGoogle Scholar
  22. Kiesswetter E, Sietmann B, Zupanic M, Seeber A (2000) Neurobehavioral study on the interactive effects of age and solvent exposure. Neurotoxicology 21:685–695Google Scholar
  23. Kiesswetter E, Schäper M, Buchta M, Schaller KH, Rossbach B, Scherhag H, Zschiesche W, Letzel S (2007) Longitudinal study on potential neurotoxic effects of aluminium: I. Assessment of exposure and neurobehavioural performance of Al welders in the train and truck construction industry over 4 years. Int Arch Occup Environ Health 81:41–67. doi:10.1007/s00420-007-0191-2 Google Scholar
  24. Kraus T, Schaller KH, Angerer J, Hilgers RD, Letzel S (2006) Aluminosis–detection of an almost forgotten disease with HRCT. J Occup Med Toxicol 1:4. doi:10.1186/1745-6673-1-4
  25. Lehnert G, Schaller KH, Angerer J (1999) Report on the status of the external quality-control programs for occupational—medical and environmental—medical toxicological analyses in biological materials in Germany. Int Arch Occup Environ Health 72:60–64. doi:10.1007/s004200050336 CrossRefGoogle Scholar
  26. Letz R, DiIorio CK, Shafer PO, Yeager KA, Henry TR, Schomer DL (2003a) A computer-based reading test for use as an index of premorbid general intellectual level in North American English-speaking adults. Neurotoxicology 24:503–512. doi:10.1016/S0161-813X(03)00076-7 CrossRefGoogle Scholar
  27. Letz R, DiIorio CK, Shafer PO, Yeager KA, Schomer DL, Henry TR (2003b) Further standardization of some NES3 tests. Neurotoxicology 24:491–501. doi:10.1016/S0161-813X(03)00044-5 CrossRefGoogle Scholar
  28. Letzel S, Wrbitzky R, Schaller KH, Angerer J, Weltle D, Mohr W, Lehnert G (1994) Lungenfunktionsuntersuchungen bei Aluminiumstaubexposition. In: E. Münzberger, Hrsg., Dokumentationsband über die Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e.V., Druckerei Rindt, pp 263–268Google Scholar
  29. Letzel S, Schaller KH, Tiller RE, Windorfer K, Borris D, Zhou Z, Angerer J, Lehnert G (1996) Untersuchungen zur Aluminiumbelastung und zur Effizienz präventiver Maßnahmen beim Aluminiumschweißen in der Automobilindustrie. In: E. Münzberger, Hrsg., Dokumentationsband über die Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin e.V., Druckerei Rindt, pp 255–259Google Scholar
  30. Letzel S, Schaller KH, Hilla W, Windorfer K, Kraus T (1999) Untersuchung zur biologischen Halbwertszeit der renalen Alumiumausscheidung bei Alumiumschweissern. Arbeitsmed Sozialmed Umweltmed 11:456–460Google Scholar
  31. Lezak MD (1995) Neuropsychological assessment. Oxford University Press, New YorkGoogle Scholar
  32. Meyer-Baron M, Schäper M, Knapp G, van Thriel C (2007) Occupational aluminum exposure: evidence in support of its neurobehavioral impact. Neurotoxicology 28:1068–1078CrossRefGoogle Scholar
  33. Motorische Leistungsserie (MLS) V.3 (1994) Dr. G. Schuhfried, MödlingGoogle Scholar
  34. Oswald WD, Roth E (1997) Der Zahlenverbindungstest, ZVT (trailmaking). Hogrefe, GöttingenGoogle Scholar
  35. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology 23:761–774. doi:10.1016/S0161-813X(02)00097-9 CrossRefGoogle Scholar
  36. Riihimäki V, Hänninen H, Akila R, Kovala T, Kuosma E, Paakkulainen H, Valkonen S, Engström B (2000) Body burden of aluminium in relation to central nervous system function among metal inert-gas welders. Scand J Work Environ Health 26:118–130Google Scholar
  37. Röllin HB, Theodorou P, Nogueir CM, Levin J (2001) Aluminium uptake and excretion in potroom workers of a new primary aluminium smelter during the construction stage. J Environ Monit 3:560–564. doi:10.1039/b105849p CrossRefGoogle Scholar
  38. Rossbach B, Buchta M, Csanady GA, Filser JG, Hilla W, Windorfer K, Stork J, Zschiesche W, Gefeller O, Pfahlberg A, Schaller KH, Egerer E, Pinzon LC, Letzel S (2006) Biological monitoring of welders exposed to aluminium. Toxicol Lett 162:239–245. doi:10.1016/j.toxlet.2005.09.018 CrossRefGoogle Scholar
  39. Schaller KH, Angerer J, Drexler H (2002) Quality assurance of biological monitoring in occupational and environmental medicine. J Chromatogr B Analyt Technol Biomed Life Sci 778:403–417. doi:10.1016/S1570-0232(02)00171-X CrossRefGoogle Scholar
  40. Schmidt KH, Metzler P (1992) Wortschatztest (WST) Beltz, WeinheimGoogle Scholar
  41. Sjögren B, Elinder CG, Lidums V, Chang G (1988) Uptake and urinary excretion of aluminum among welders. Int Arch Occup Environ Health 60:77–79. doi:10.1007/BF00381484 CrossRefGoogle Scholar
  42. Sjögren B, Gustavsson P, Hogstedt C (1990) Neuropsychiatric symptoms among welders exposed to neurotoxic metals. Br J Ind Med 47:704–707Google Scholar
  43. Sjögren B, Iregren A, Frech W, Hagman M, Johansson L, Tesarz M, Wennberg A (1996) Effects on the nervous system among welders exposed to aluminium and manganese. Occup Environ Med 53:32–40. doi:10.1136/oem.53.1.32 CrossRefGoogle Scholar
  44. Wang M, Ruan DY, Chen JT, Xu YZ (2002) Lack of effects of vitamin E on aluminium-induced deficit of synaptic plasticity in rat dentate gyrus in vivo. Food Chem Toxicol 40:471–478. doi:10.1016/S0278-6915(01)00094-1 CrossRefGoogle Scholar
  45. Wechsler D (1991) Hamburg-Wechsler-Intelligenztest für Erwachsene (HAWIE). Hans Huber, WienGoogle Scholar
  46. Wiener Reaktionstest V.3 (1997) Dr. G. Schuhfried, MödlingGoogle Scholar
  47. Yousef MI (2004) Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicology 199:47–57. doi:10.1016/j.tox.2004.02.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ernst Kiesswetter
    • 1
  • M. Schäper
    • 1
  • M. Buchta
    • 2
  • K. H. Schaller
    • 3
  • B. Rossbach
    • 2
  • T. Kraus
    • 4
  • S. Letzel
    • 2
  1. 1.Institute for Occupational Physiology, University of DortmundDortmundGermany
  2. 2.Institute for Occupational, Social and Environmental MedicineUniversity of MainzMainzGermany
  3. 3.Institute and Outpatient-Clinic For Occupational, Social and Environmental MedicineUniversity of Erlangen-NürnbergErlangenGermany
  4. 4.Institute and Outpatient-Clinic for Occupational and Social MedicineUniversity of TechnologyAachenGermany

Personalised recommendations