Different effects of PM10 exposure on preterm birth by gestational period estimated from time-dependent survival analyses

Original Article



We conducted this study to determine if the preterm risks due to PM10 exposure vary with the exposure periods during pregnancy. This study was also conducted to estimate the different effects of PM10 exposure on preterm birth by exposure periods using the extended Cox model with PM10 exposure as a time-dependent covariate.


We studied birth data obtained from the Korea National Statistical office for 374,167 subjects who were delivered between 1998 and 2000 in Seoul, South Korea. We used PM10 data that was measured hourly to give 24-h averages at 27 monitoring stations in Seoul. The extended Cox model with time-dependent exposure was used to determine if the risk of preterm delivery could be associated with PM10 exposures for each trimester during pregnancy.


Effect of PM10 exposure prior to the 37 weeks of gestational period was stronger on the risk of premature birth than that posterior to the 37 weeks of gestational weeks. This trend was consistent for each trimester; however, the hazard ratios for preterm delivery associated with PM10 exposure in the first and third trimester were slightly higher than those of the second trimester.


The risk of preterm birth associated with exposure to PM10 differed with the exposure period of the neonates. Therefore, when studying the impact of air pollution exposure during pregnancy, the exposure period during pregnancy should be considered.


Preterm birth PM10 exposure Extended Cox model 


  1. Albertsen K, Andersen AM, Olsen J, Gronbaek M (2004) Alcohol consumption during pregnancy and the risk of preterm delivery. Am J Epidemiol 159(2):155–161. doi:10.1093/aje/kwh034 PubMedCrossRefGoogle Scholar
  2. Anderson HR, Bremner SA, Atkinson RW, Harrison RM, Walters S (2001) Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med 58(8):504–510. doi:10.1136/oem.58.8.504 PubMedCrossRefGoogle Scholar
  3. Bobak M (2000) Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect 108(2):173–176. doi:10.2307/3454517 PubMedCrossRefGoogle Scholar
  4. Bobak M, Leon DA (1999) Pregnancy outcomes and outdoor air pollution: an ecological study in districts of the Czech Republic 1986–8. Occup Environ Med 56:539–543PubMedCrossRefGoogle Scholar
  5. Cnattingius S, Akre O, Lambe M, Ockene J, Granath F (2006) Will an adverse pregnancy outcome influence the risk of continued smoking in the next pregnancy? Am J Obstet Gynecol 195(6):1680–1686. doi:10.1016/j.ajog.2006.06.071 PubMedCrossRefGoogle Scholar
  6. Dejmek J, Selevan SG, Benes I, Slansky I, Sram RJ (1999) Fetal growth and maternal exposure to particulate matter during pregnancy. Environ Health Perspect 107:475–480. doi:10.2307/3434630 PubMedCrossRefGoogle Scholar
  7. Ha E, Cho SI, Chen D, Chen C, Ryan L, Smith TJ, Xu X, Christiani DC (2002) Parental exposure to organic solvents and reduced birth weight. Arch Environ Health 57(3):207–214PubMedCrossRefGoogle Scholar
  8. Ha EH, Hong YC, Lee BE, Woo BH, Schwartz J, Christiani DC (2001) Is air pollution a risk factor for low birth weight in Seoul? Epidemiology 12:643–648. doi:10.1097/00001648-200111000-00011 PubMedCrossRefGoogle Scholar
  9. Ha EH, Lee BE, Park HS, Kim YS, Kim H, Kim YJ, Hong YC, Park EA (2004) Prenatal exposure to PM10 and preterm birth between 1998 and 2000 in Seoul, Korea. J Prev Med Pub Health 37(4):300–305Google Scholar
  10. Ha EH, Lee JT, Kim H, Hong YC, Lee BE, Park HS, Christiani DC (2003) Infant susceptibility of mortality to air pollution in Seoul, South Korea. Pediatrics 111(2):284–290. doi:10.1542/peds.111.2.284 PubMedCrossRefGoogle Scholar
  11. Hansen C, Neller A, Williams G, Simpson R (2006) Maternal exposure to low levels of ambient air pollution and preterm birth in Brisbane, Australia. BJOG 113(8):935–941. doi:10.1111/j.1471-0528.2006.01010.x PubMedCrossRefGoogle Scholar
  12. Hansen C, Neller A, Williams G, Simpson R (2007) Low levels of ambient air pollution during pregnancy and fetal growth among term neonates in Brisbane, Australia. Environ Res 103(3):383–389. doi:10.1016/j.envres.2006.06.010 PubMedCrossRefGoogle Scholar
  13. Horta BL, Victora CG, Menezes AM, Halpern R, Barros FC (1997) Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking. Paediatr Perinat Epidemiol 11(2):140–151. doi:10.1046/j.1365-3016.1997.d01-17.x PubMedCrossRefGoogle Scholar
  14. Joseph KS, Kramer MS (1996) Review of the evidence on fetal and early childhood antecedents of adult chronic disease. Epidemiol Rev 18(2):158–174PubMedGoogle Scholar
  15. Kharrazi M, DeLorenze GN, Kaufman FL, Eskenazi B, Bernert JT Jr, Graham S, Pearl M, Pirkle J (2004) Environmental tobacco smoke and pregnancy outcome. Epidemiology 15(6):660–670. doi:10.1097/01.ede.0000142137.39619.60 PubMedCrossRefGoogle Scholar
  16. Kleinbaum DG, Klein M (2005) Survival analysis: a self-learning text, 2nd edn. SpringerGoogle Scholar
  17. Leem JH, Kaplan BM, Shim YK, Pohl HR, Gotway CA, Bullard SM, Rogers JF, Smith MM, Tylenda CA (2006) Exposures to air pollutants during pregnancy and preterm delivery. Environ Health Perspect 114(6):905–910PubMedCrossRefGoogle Scholar
  18. Liu S, Krewski D, Shi Y, Chen Y, Burnett RT (2003) Association between gaseous ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada. Environ Health Perspect 111(14):1773–1778PubMedGoogle Scholar
  19. Maisonet M, Bush TJ, Correa A, Jaakkola JJ (2001) Relation between ambient air pollution and low birth weight in the Northeastern United States. Environ Health Perspect 109(Suppl 3):351–356. doi:10.2307/3434782 PubMedCrossRefGoogle Scholar
  20. Maroziene L, Grazuleviciene R (2002) Maternal exposure to low-level air pollution and pregnancy outcomes: a population-based study. Environ Health 1(1):6. doi:10.1186/1476-069X-1-6 PubMedCrossRefGoogle Scholar
  21. Medeiros A, Gouveia N (2005) Relationship between low birth weight and air pollution in the city of Sao Paulo, Brazil. Rev Saude Publica 39:965–972PubMedCrossRefGoogle Scholar
  22. O’Neill MS, Hertz-Picciotto I, Pastore LM, Weatherley BD (2003) Have studies of urinary tract infection and preterm delivery used the most appropriate methods? Paediatr Perinat Epidemiol 17(3):226–233. doi:10.1046/j.1365-3016.2003.00499.x CrossRefGoogle Scholar
  23. Peng RD, Dominici F, Pastor-Barriuso R, Zeger SL, Samet JM (2005) Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol 161(6):585–594. doi:10.1093/aje/kwi075 PubMedCrossRefGoogle Scholar
  24. Platt RW, Joseph KS, Ananth CV, Grondines J, Abrahamowicz M, Kramer MS (2004) A proportional hazards model with time-dependent covariates and time-varying effects for analysis of fetal and infant death. Am J Epidemiol 160(3):199–206. doi:10.1093/aje/kwh201 PubMedCrossRefGoogle Scholar
  25. Raatikainen K, Huurinainen P, Heinonen S (2007) Smoking in early gestation or through pregnancy: A decision crucial to pregnancy outcome. Prev Med 44(1):59–63. doi:10.1016/j.ypmed.2006.07.017 PubMedCrossRefGoogle Scholar
  26. Ritz B, Yu F (1999) The effect of ambient carbon monoxide on low birth weight among children born in southern California between 1989 and 1993. Environ Health Perspect 107(1):17–25. doi:10.2307/3434285 PubMedCrossRefGoogle Scholar
  27. Ritz B, Yu F, Chapa G, Fruin S (2000) Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology 11(5):502–511. doi:10.1097/00001648-200009000-00004 PubMedCrossRefGoogle Scholar
  28. Roberts S (2004) Interactions between particulate air pollution and temperature in air pollution mortality time series studies. Environ Res 96(3):328–337. doi:10.1016/j.envres.2004.01.015 PubMedCrossRefGoogle Scholar
  29. Roberts S (2005) An investigation of distributed lag models in the context of air pollution and mortality time series analysis. J Air Waste Manag Assoc 55(3):273–282PubMedGoogle Scholar
  30. Rogers JF, Dunlop AL (2006) Air pollution and very low birth weight neonates: a target population? Pediatrics 118(1):156–164. doi:10.1542/peds.2005-2432 PubMedCrossRefGoogle Scholar
  31. Sagiv SK, Mendola P, Loomis D, Herring AH, Neas LM, Savitz DA, Poole C (2005) A time-series analysis of air pollution and preterm birth in Pennsylvania, 1997–2001. Environ Health Perspect 113(5):602–606PubMedGoogle Scholar
  32. Salam MT, Millstein J, Li YF, Lurmann FW, Margolis HG, Gilliland FD (2005) Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: results from the Children’s Health Study. Environ Health Perspect 113(11):1638–1644PubMedGoogle Scholar
  33. Tsai SS, Yu HS, Liu CC, Yang CY (2003) Increased incidence of preterm delivery in mothers residing in an industrialized area in Taiwan. J Toxicol Environ Health A 66(11):987–994. doi:10.1080/15287390306396 PubMedCrossRefGoogle Scholar
  34. Wang X, Chen D, Niu T, Wang Z, Wang L, Ryan L, Smith T, Christiani DC, Zuckerman B, Xu X (2000) Genetic susceptibility to benzene and shortened gestation: evidence of gene-environment interaction. Am J Epidemiol 152(8):693–700. doi:10.1093/aje/152.8.693 PubMedCrossRefGoogle Scholar
  35. Wang X, Ding H, Ryan L, Xu X (1997) Association between air pollution and low birth weight: a community-based study. Environ Health Perspect 105:514–520. doi:10.2307/3433580 PubMedCrossRefGoogle Scholar
  36. Wilhelm M, Ritz B (2005) Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect 113(9):1212–1221PubMedCrossRefGoogle Scholar
  37. Windham GC, Hopkins B, Fenster L, Swan SH (2000) Prenatal active or passive tobacco smoke exposure and the risk of preterm delivery or low birth weight. Epidemiology 11(4):427–433. doi:10.1097/00001648-200007000-00011 PubMedCrossRefGoogle Scholar
  38. Woodruff TJ, Parker JD, Kyle AD, Schoendorf KC (2003) Disparities in exposure to air pollution during pregnancy. Environ Health Perspect 111(7):942–946PubMedGoogle Scholar
  39. Xu X, Ding H, Wang X (1995) Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study. Arch Environ Health 50(6):407–415PubMedGoogle Scholar
  40. Yang CY, Chang CC, Tsai SS, Chuang HY, Ho CK, Wu TN, Sung FC (2003) Preterm delivery among people living around Portland cement plants. Environ Res 92(1):64–68. doi:10.1016/S0013-9351(02)00055-5 PubMedCrossRefGoogle Scholar
  41. Yang CY, Chiu HF, Tsai SS, Chang CC, Chuang HY (2002) Increased risk of preterm delivery in areas with cancer mortality problems from petrochemical complexes. Environ Res 89(3):195–200. doi:10.1006/enrs.2002.4374 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Young Ju Suh
    • 1
  • Ho Kim
    • 4
  • Ju Hee Seo
    • 2
    • 3
  • Hyesook Park
    • 2
    • 3
  • Young Ju Kim
    • 5
  • Yun Chul Hong
    • 6
  • Eun Hee Ha
    • 2
    • 3
  1. 1.Center for Genome ResearchSamsung Biomedical Research InstituteSeoulSouth Korea
  2. 2.Department of Preventive Medicine, Ewha Medical Research Institute, School of MedicineEwha Womans UniversitySeoulSouth Korea
  3. 3.BK21 Research Division for Medicine, School of MedicineEwha Womans UniversitySeoulSouth Korea
  4. 4.Department of Epidemiology and Biostatistics, School of Public Health and the Institute of Environment and HealthSeoul National UniversitySeoulSouth Korea
  5. 5.Department of Obstetrics and Gynecology, School of MedicineEwha Womans UniversitySeoulSouth Korea
  6. 6.Department of Preventive Medicine, College of MedicineSeoul National UniversitySeoulSouth Korea

Personalised recommendations