Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

On electrohydrodynamic flow of Jeffrey fluid through a heating vibrating cylindrical tube with moving endoscope

  • 12 Accesses


This paper deals with the study of the effect of a variable normal electric field on Jeffry flow through a heating vibrating cylindrical tube with moving endoscope. Under the assumption of long wavelength and the use of appropriate non-dimensional quantities, the analytical solutions for axial and radial velocities, stream function, fluid pressure, electrical potential function and temperature distribution are obtained. The results show that the volume of the trapped bolus increases by the increase of amplitude ratio, endoscope radius, Jeffry parameter and electrical Rayleigh number, whereas it has an opposite effect on the increase in the endoscope velocity and temperature parameter. Furthermore, it is observed that the effects of the amplitude ratio and Jeffry parameter on the axial velocity in the presence of electric field are greater and clearer than those in the absence of electric field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

  2. 2.

    Srivastava, L.M., Srivastava, V.P.: Influence of wall elasticity and Poiseuille flow on peristaltic induced flow of a particle-fluid mixture. Int. J. Eng. Sci. 35, 1359–1361 (1997)

  3. 3.

    Mittra, T.K., Prasad, S.N.: On the influence of wall properties and Poiseuille flow in peristalsis. J. Biomech. 6, 681–693 (2012)

  4. 4.

    Abd Elnaby, M.A., Haroun, M.H.: A new model for study the effect of wall properties on peristaltic transport of a viscous fluid. Commun. Nonlinear Sci. Numer. Simul. 13, 752–762 (2008)

  5. 5.

    Mekheimer, KhS, Abd-El-Wahab, A.N.: Effect of wall compliance on compressible fluid transport induced by a surface acoustic wave in a micro-channel. Numer. Methods Partial Differ. Equ. 27, 621–636 (2009)

  6. 6.

    Riaz, A., Nadeem, S., Ellahi, R., Akbar, N.S.: The influence of wall flexibility on unsteady peristaltic flow of Prandtl fluid in a three dimensional rectangular duct. Appl. Math. Comput. 241, 389–400 (2014)

  7. 7.

    Chakraborty, S.: Augmentation of peristaltic microflows through electro-osmotic mechanism. J. Phys. D 39, 5356–5363 (2006)

  8. 8.

    Shit, G.C., Ranjit, N.K., Sinha, A.: Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave: a non-Newtonian model. J. Bionic Eng. 13, 436–448 (2016)

  9. 9.

    Ranjit, N.K., Shit, G.C.: Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip. Physica A 482, 458–476 (2017)

  10. 10.

    Tripathi, D., Sharma, A., Beg, O.A.: Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz–Smoluchowski velocity. Int. J. Heat Mass Transf. 111, 138–149 (2017)

  11. 11.

    Tripathi, D., Jhorar, R., Beg, O.A., Kadir, A.: Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. J. Mol. Liq. 236, 358–367 (2017)

  12. 12.

    Hayat, T., Qayyum, S., Imtiaz, M., Alsaedi, A.: Jeffrey fluid flow due to curved stretching surface with Cattaneo–Christov heat flux. Appl. Math. Mech. (Engl. Ed.) 39(8), 205–243 (2018)

  13. 13.

    Akram, S., Nadeem, S.: Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: closed form solutions. J. Magn. Magn. Mater. 328, 11–20 (2013)

  14. 14.

    Asha, S.K., Deepa, C.K.: Impacts of hall and heat transfer on peristaltic blood flow of a MHD Jeffrey fluid in a vertical asymmetric porous channel. Int. J. Adv. Appl. Math. Mech. 6(4), 55–63 (2019)

  15. 15.

    Hasona, W.M., El-Shekhipy, A., Ibrahim, M.G.: Semi-analytical solution to MHD peristaltic flow of a Jeffrey fluid in presence of Joule heat effect by using multi-step differential transform method. New Trends Math. Sci. 7(2), 123–137 (2019)

  16. 16.

    Haroun, M.H.: On non-linear magnetohydrodynamic flow due to peristaltic transport of an Oldroyd 3-constant fluid. Z. Naturforsch. A 61, 263–274 (2006)

  17. 17.

    Haroun, M.H.: Effect of Deborah number and phase difference on peristaltic transport of a third-order fluid in an asymmetric channel. Commun. Nonlinear Sci. Numer. Simul. 12, 1464–1480 (2007)

  18. 18.

    Mekheimer, KhS, Saleem, N., Hayat, T.: Simultaneous effects of induced magnetic field and heat and mass transfer on the peristaltic motion of second-order fluid in a channel. Int. J. Numer. Methods Fluids 70, 342–358 (2012)

  19. 19.

    Yang, X., Qi, H.T., Jiang, X.Y.: Numerical analysis for electroosmotic flow of fractional Maxwell fluids. Appl. Math. Lett. 78, 1–8 (2018)

  20. 20.

    Hayat, T., Ali, N., Asghar, S., Siddiqui, A.M.: Exact peristaltic flow in tubes with an endoscope. Appl. Math. Comput. 182, 359–368 (2006)

  21. 21.

    Hayat, T., Ahmad, N., Ali, N.: Effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid. Commun. Nonlinear Sci. Numer. Simul. 13, 1581–1591 (2008)

  22. 22.

    Abd-Allaa, A.M., Abo-Dahaba, S.M., Kilicman, A.: Peristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscope. J. Magn. Magn. Mater. 384, 79–86 (2015)

  23. 23.

    Irshad, N., Saleem, A., Nadeem, S., Shahzadi, I.: Endopscopic analysis of wave propagation with Ag-nanoparticles in curved tube having permeable wall. Curr. Nanosci. 14, 384–402 (2018)

  24. 24.

    Mekheimer, KhS, Abo-Elkhair, R.E., Moawad, A.M.A.: Electro-osmotic flow of non-Newtonian biofluids through wavy micro-concentric tubes. Bionanoscience 8, 723–734 (2018)

  25. 25.

    Mekheimer, KhS, Zaher, A.Z., Abdellateef, A.I.: Entropy hemodynamics particle-fluid suspension model through eccentric catheterization for time-variant stenotic arterial wall: catheter injection. Int. J. Geom. Methods Mod. Phys. 16(11), 1950164 (2019)

  26. 26.

    El-Sayed, M.F., Haroun, M.H., Mostapha, D.R.: Electrohydrodynamic peristaltic flow of dielectric Oldroydian viscoelastic fluid in a flexible channel with heat transfer. J. Appl. Mech. Tech. Phys. 55(4), 565–577 (2014)

  27. 27.

    El-Sayed, M.F., Haroun, M.H., Mostapha, D.R.: Electroconvection peristaltic flow of viscous dielectric liquid sheet in asymmetrical flexible channel. At. Sprays 25, 985–1011 (2015)

  28. 28.

    El-dabe, N.T.M., Moatimid, G.M., Hassan, M.A., Mostapha, D.R.: Electrohydrodynamic peristaltic flow of a viscoelastic Oldroyd fluid with a mild stenosis : application of an endoscope. J. Appl. Mech. Tech. Phys. 57(1), 38–54 (2016)

  29. 29.

    Abo-Elkhair, R.E., Mekheimer, KhS, Zaher, A.Z.: Electro-magnetohydrodynamic oscillatory flow of a dielectric fluid through a porous medium with heat transfer: Brinkman model. Bionanoscience 8(2), 596–608 (2018)

  30. 30.

    Abo-Elkhair, R.E., Mekheimer, KhS, Moawad, A.M.A.: Combine impacts of electrokinetic variable viscosity and partial slip on peristaltic MHD flow through a micro-channel. Iran J. Sci. Technol. Trans. A Sci. 43, 201–212 (2019)

  31. 31.

    Sharma, B.D., Yadav, P.K., Filippov, A.: A Jeffrey-fluid model of blood flow in tubes with stenosis. Colloid. J. 79(6), 849–856 (2017)

  32. 32.

    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. The Macmillan Company, New York (1960)

  33. 33.

    Tropea, C., Yarin, A.L., Foss, J.F.: Hand Book of Experimental Fluid Mechanics. Springer, Berlin (2007)

  34. 34.

    Wolfgang, K.H., Phillips, M.: Classical Electricity and Magnetism. Addison-Wellsley publishing company, India (1955)

  35. 35.

    Takashima, M., Ghosh, A.K.: Electrohydrodynamic instability of viscoelastic liquid layer. J. Phys. Soc. Japan 47, 1717–1722 (1979)

  36. 36.

    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

Download references

Author information

Correspondence to M. H. Haroun.

Ethics declarations

Conflicts of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haroun, M.H. On electrohydrodynamic flow of Jeffrey fluid through a heating vibrating cylindrical tube with moving endoscope. Arch Appl Mech (2020).

Download citation


  • Jeffrey fluid
  • Electric field
  • Moving endoscope
  • Vibrating cylindrical tube
  • Heat transfer
  • Trapping phenomenon