Advertisement

Novel interval model applied to derived variables in static and structural problems

  • Evgenija D. PopovaEmail author
  • Isaac Elishakoff
Original
  • 31 Downloads

Abstract

In this work, we further develop a newly proposed interval algebraic approach for analysis or design of structures involving uncertain interval-valued parameters. The methodology is based on an algebraic extension of classical interval arithmetic, namely Kaucher arithmetic, and within it the interval equilibrium equations can be completely satisfied by the primary unknown variables (displacements). Here this method is expanded to derived (secondary) variables—forces, strains and stresses which are of particular practical interest in design and strength of materials. Numerical examples are presented to illustrate the proposed methodology and to compare the algebraic interval approach to that based on classical interval arithmetic.

Keywords

Uncertainty Interval arithmetic Finite element models Forces Strains Stresses 

Notes

Acknowledgements

The first author is supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)”, financed by the Bulgarian Ministry of Education and Science.

References

  1. 1.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)zbMATHGoogle Scholar
  2. 2.
    Ben-Haim, Y., Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics. Elsevier, Amsterdam (1990)zbMATHGoogle Scholar
  3. 3.
    Du, J., Du, Z., Wei, Y., Zhang, W., Guo, X.: Exact response bound analysis of truss structures via linear mixed 0–1 programming and sensitivity bounding technique. Int. J. Numer. Methods Eng. 116, 21–42 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Elishakoff, I.: Convex modeling—a generalization of interval analysis for non-probabilistic treatment of uncertainty. In: Proceedings of the International Workshop on Applications of Interval Computations (APIC’95), pp. 76–79 (1995)Google Scholar
  5. 5.
    Elishakoff, I., Gabriele, S., Wang, Y.: Generalized Galileo Galilei problem in interval setting for functionally related loads. Arch. Appl. Mech. 86(7), 1203–1217 (2016)CrossRefGoogle Scholar
  6. 6.
    Elishakoff, I., Ohsaki, M.: Optimization and Anti-optimization of Structures Under Uncertainty. World Scientific, Singapore (2010)CrossRefGoogle Scholar
  7. 7.
    Fuchs, M.B.: Unimodal formulation of the analysis and design problems for framed structures. Comput. Struct. 63, 739–747 (1997)CrossRefGoogle Scholar
  8. 8.
    Ioakimidis, N.I.: Computation of ranges of functions in problems of applied mechanics with the computational method of quantifier elimination, TR-2018-Q3, Nemertes: institutional repository of the University of Patras. http://nemertes.lis.upatras.gr/jspui/bitstream/10889/11605/1/TR-2018-Q3.pdf. Accessed Jan 2019 (2018)
  9. 9.
    Kaucher, E.: Interval analysis in the extended interval space IR. Comput. Suppl. 2, 33–49 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Markov, S.M.: On directed interval arithmetic and its applications. J. Universal Comput. Sci. 1(7), 514–526 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Moens, D., Hanss, M.: Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elem. Anal. Des. 47, 4–16 (2011)CrossRefGoogle Scholar
  12. 12.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  13. 13.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM Press, Philadelphia (2009)CrossRefGoogle Scholar
  14. 14.
    Muhanna, R.L.: Benchmarks for interval finite element computations, Center for Reliable Engineering Computing, Georgia Tech, USA. http://rec.ce.gatech.edu/resources/Benchmark_2.pdf. Accessed 12 Nov 2018 (2004)
  15. 15.
    Muscolino, G., Sofi, A.: Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab. Eng. Mech. 28, 152–163 (2012)CrossRefGoogle Scholar
  16. 16.
    Popova, E.D.: The Arithmetic on Proper & Improper Intervals. http://www.math.bas.bg/~epopova/directed.html. Accessed 6 Dec 2018 (1996)
  17. 17.
    Popova, E.D.: Multiplication distributivity of proper and improper intervals. Reliab. Comput. 7(2), 129–140 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Popova, E.D.: Computer-assisted proofs in solving linear parametric problems. In: The Proceedings of SCAN’06, p. 35, IEEE Computer Society Press (2006)Google Scholar
  19. 19.
    Popova, E.D.: Improved solution to the generalized Galilei’s problem with interval loads. Arch. Appl. Mech. 87(1), 115–127 (2017)CrossRefGoogle Scholar
  20. 20.
    Popova, E.D.: Equilibrium equations in interval models of structures. Int. J. Reliab. Saf. 12(1/2), 218–235 (2018)CrossRefGoogle Scholar
  21. 21.
    Popova, E.D.: New parameterized solution with application to bounding secondary variables in FE models of structures. arXiv:1812.07300 (2018)
  22. 22.
    Popova, E.D.: Algebraic solution to interval equilibrium equations of truss structures. Appl. Math. Model. 65, 489–506 (2019)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Qiu, Z., Elishakoff, I.: Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput. Methods Appl. Mech. Eng. 152, 361–372 (1998)CrossRefGoogle Scholar
  24. 24.
    Qiu, Z.P., Wang, L.: The need for introduction of non-probabilistic interval conceptions into structural analysis and design. Sci. China Phys. Mech. Astron. 59(11), 114632 (2016)Google Scholar
  25. 25.
    Rama Rao, M.V., Mullen, R.L., Muhanna, R.L.: A new interval finite element formulation with the same accuracy in primary and derived variables. Int. J. Reliab. Saf. 5, 336–357 (2011)CrossRefGoogle Scholar
  26. 26.
    Sainz, M.A., Armengol, J., Calm, R., Herrero, P., Jorba, L., Vehi, J.: Modal Interval Analysis: New Tools for Numerical Information. Lecture Notes in Mathematics 2091, Springer (2014)Google Scholar
  27. 27.
    Sofi, A., Romeo, E.: A novel interval finite element method based on the improved interval analysis. Comput. Methods Appl. Mech. Eng. 311, 671–697 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sofi, A., Romeo, E., Barrera, O., Cocks, A.: An interval finite element method for the analysis of structures with spatially varying uncertainties. Adv. Eng. Softw. 128, 1–19 (2019)CrossRefGoogle Scholar
  29. 29.
    Su, J., Zhu, Y., Wang, J., Li, A., Yang, G.: An improved interval finite element method based on the element-by-element technique for large truss system and plane problems. Arch. Mech. Eng. 10(4), 1–10 (2018) CrossRefGoogle Scholar
  30. 30.
    Verhaeghe, W., Desmet, W., Vandepitte, D., Moens, D.: Interval fields to represent uncertainty on the output side of a static FE analysis. Comput. Methods Appl. Mech. Eng. 260, 50–62 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wu, J., Luo, Z., Zhang, Y., Zhang, N., Chen, L.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95, 608–630 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Ocean and Mechanical EngineeringFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations