Advertisement

Dynamics of vibrating beams using first-order theory based on Legendre polynomial expansion

  • A. CzekanskiEmail author
  • V. V. Zozulya
Original
  • 48 Downloads

Abstract

First-order models are used in the analysis of the tension–compression and transverse bending modes of beam vibration. The equation of motion for each mode and the expressions for boundary conditions are obtained using the generalized variational principle. Systems of partial differential equations for the longitudinal and bending modes of vibrating beams are reduced to a single fourth-order equation, and frequency equations are obtained. The problem of free and forced vibrations of beams that are simply supported at both ends is presented. An analysis and comparison with well-known theories is performed using computer algebra system Mathematica.

Keywords

First-order beam theory Vibration Natural frequency Legendre polynomial 

Notes

Acknowledgements

We gratefully acknowledge the financial support provided by the Committee of Science and Technology of Mexico (CONACYT) through a Research Grant (Ciencia Básica, Reference No. 256458). The authors thank Professor Isaac Elishakoff, from Florida Atlantic University, for sending papers [13, 32] and for providing motivation for the research performed.

References

  1. 1.
    Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland Publishing Co., Amsterdam (1973)zbMATHGoogle Scholar
  2. 2.
    Anderson, S.: Higher-order rod approximations for the propagation of longitudinal stress waves in elastic bars. J. Sound Vib. 290, 290–308 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bhaskar, A.: Elastic waves in Timoshenko beams: the ‘lost and found’ of an eigenmode. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 239–255 (2009) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bishop, R.E.D.: Longitudinal waves in beams. Aeronaut. Q. 3(2), 280–293 (1952)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carrera, E., Giunta, G., Petrolo, M.: Beam Structures: Classical and Advanced Theories. Wiley, New Delhi (2011)CrossRefGoogle Scholar
  6. 6.
    Carrera, E., Miglioretti, F., Petrolo, M.: Computations and evaluations of higher-order theories for free vibration analysis of beams. J. Sound Vib. 331, 4269–4284 (2012)CrossRefGoogle Scholar
  7. 7.
    Carrera, E., Pagani, A.: Free vibration analysis of civil engineering structures by component-wise models. J. Sound Vib. 333, 4597–4620 (2014)CrossRefGoogle Scholar
  8. 8.
    Carrera, E., Varello, A.: Dynamic response of thin-walled structures by variable kinematic one-dimensional models. J. Sound Vib. 331, 5268–5282 (2012)CrossRefGoogle Scholar
  9. 9.
    Carrera, E., Zappino, E.: Carrera unified formulation for free-vibration analysis of aircraft structures. AIAA J. 54(1), 280–292 (2016)CrossRefGoogle Scholar
  10. 10.
    Chervyakov, A.M., Nesterenko, V.V.: Is it possible to assign physical meaning to field theory with higher derivatives. Phys. Rev. D 48(12), 5811–5817 (1993).  https://doi.org/10.1103/PhysRevD.48.5811 CrossRefGoogle Scholar
  11. 11.
    Egorova, O.V., Zhavoronok, S.I., Kurbatov, A.S.: An application of various n-th order shell theories to normal waves propagation problems. In: PNRPU Mechanics Bulletin, vol. 2, pp. 36–59 (2015). (in Russian).  https://doi.org/10.15593/perm.mech/2015.2.03.
  12. 12.
    Elishakoff, I.: An equation both more consistent and simpler than the Bresse–Timoshenko equation. In: Gilat, R., Banks-Sills, L. (eds.) Advances in Mathematical Modeling and Experimental Methods for Materials and Structures, pp. 254–269. Springer, New York (2010)Google Scholar
  13. 13.
    Elishakoff, I., Kaplunov, J., Nolde, E.: Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia. Appl. Mech. Rev. (2015).  https://doi.org/10.1115/1.4031965 CrossRefGoogle Scholar
  14. 14.
    Elishakoff, I., Soret, C.: A consistent set of nonlocal Bresse–Timoshenko equations for nanobeams with surface effects. J. Appl. Mech. 80, 6 (2013).  https://doi.org/10.1115/1.4023630 CrossRefGoogle Scholar
  15. 15.
    Graff, K.F.: Wave Motion in Elastic Solids. Dover Publications, New York (1991)zbMATHGoogle Scholar
  16. 16.
    Grigolyuk, E.I., Selezov, I.T.: Nonclassical theories of vibrations of columns, plates, and shells, advances. In: Science and Technology, Series. Mechanics of Deformable Solids, vol. 5. VINITI Publishers, Moscow (1973). (in Russian) Google Scholar
  17. 17.
    Gurtin, M.E.: Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal. 16(1), 34–50 (1964)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Han, S.N., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)CrossRefGoogle Scholar
  19. 19.
    Hoskins, R.F.: Delta Functions. Introduction to Generalized Functions. Woodhead Publishing, Oxford (2009)zbMATHGoogle Scholar
  20. 20.
    Inman, D.J.: Engineering Vibration, 4th edn. Pearson Education, Inc, Hoboken (2012)Google Scholar
  21. 21.
    Khoma, I.Y.: Generalized Theory of Anisotropic Shells. Naukova Dumka, Kiev (1987). (in Russian) Google Scholar
  22. 22.
    Kil’chevskiy, N.A.: Fundamentals of the Analytical Mechanics of Shells, NASA TT, F-292. Washington (1965)Google Scholar
  23. 23.
    Magrab, E.B.: Vibrations of Elastic Systems. With Applications to MEMS and NEMS. Springer, New York (2012)CrossRefGoogle Scholar
  24. 24.
    Medick, M.A.: One-dimensional theories of wave propagation and vibrations in elastic bars of rectangular cross section. J. Appl. Mech. 33(3), 489–495 (1966)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mindlin, R.D.: An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific Publishing Co., Hackensack (2006)CrossRefGoogle Scholar
  26. 26.
    Pelekh, B.L., Sukhorol’skii, M.A.: Contact Problems of the Theory of Elastic Anisotropic Shells. Naukova Dumka, Kiev (1980). (in Russian) Google Scholar
  27. 27.
    Rajasekaran, S.: Structural dynamics of earthquake engineering. Theory and Application using MATHEMATICA and MATLAB. Woodhead Publishing Limited, Cambridge (2009)Google Scholar
  28. 28.
    Rayleigh, J.W.S.: The Theory of Sound, vol. I, II. Dover Publications, New York (1945)zbMATHGoogle Scholar
  29. 29.
    Rao, S.: Vibration of Continuous Systems, 2nd edn. Wiley, Hoboken (2019)CrossRefGoogle Scholar
  30. 30.
    Sansone, G.: Orthogonal Functions, 2nd edn. Dover Publications, Inc., New York (1991)Google Scholar
  31. 31.
    Shatalov, M., Marais, J., Fedotov, I., et al.: Vibration of isotropic solid rods: from classical to modern theories. In: Schmidt, M. (ed.) Advances in Computer Science and Engineering, pp. 187–214. InTech Open Access Publisher, Rijeka (2011)Google Scholar
  32. 32.
    Sorokin, E.S., Arkhipov, A.S.: The study of free transverse oscillations of a beam as a plane problem of the theory of elasticity. In: Structural Mechanics, pp. 134–141. Moscow (1966) (in Russian) Google Scholar
  33. 33.
    Stephen, N.G.: The second spectrum of Timoshenko beam theory. J. Sound Vib. 80(4), 578–582 (1982)CrossRefGoogle Scholar
  34. 34.
    Stephen, N.G.: The second spectrum of Timoshenko beam theory further assessment. J. Sound Vib. 292, 372–389 (2006)CrossRefGoogle Scholar
  35. 35.
    Tenkam, H.M., Shatalov, M., Fedotov, I., et al.: Mathematical models for the propagation of stress waves in elastic rods. Exact solutions and numerical simulation. Adv. Appl. Math. Mech. 8(2), 257–270 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41(245), 744–746 (1921)CrossRefGoogle Scholar
  37. 37.
    Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross section. Philos. Mag. 43(257), 125–131 (1922)CrossRefGoogle Scholar
  38. 38.
    Traill-Nash, R.W., Collar, A.R.: The effects of shear flexibility and rotatory inertia on the bending vibrations of beams. Q. J. Mech. Appl. Math. 6(2), 186–222 (1953)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Van Rensburg, N.F.J., van der Merwe, A.J.: Natural frequencies and modes of a Timoshenko beam. Wave Motion 44, 58–69 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Vekua, I.N.: Shell Theory, General Methods of Construction. Pitman Advanced Pub. Program, Boston (1986)Google Scholar
  41. 41.
    Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering, 5th edn. Wiley, New York (1990)Google Scholar
  42. 42.
    Zhavoronok, S.I.: A Vekua-type linear theory of thick elastic shells. J. Appl. Math. Phys. (ZAMP) 94(1–2), 164–184 (2014)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zozulya, V.V., Saez, A.: High-order theory for arched structures and its application for the study of the electrostatically actuated MEMS devices. Arch. Appl. Mech. 84(7), 1037–1055 (2014)CrossRefGoogle Scholar
  44. 44.
    Zozulya, V.V., Saez, A.: A high order theory of a thermo elastic beams and its application to the MEMS/NEMS analysis and simulations. Arch. Appl. Mech. 86(7), 1255–1272 (2016)CrossRefGoogle Scholar
  45. 45.
    Zozulya, V.V.: Higher order theory of micropolar plates and shells. J. Appl. Math. Mech. (ZAMM) 98, 886–918 (2018)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zozulya, V.V.: Higher order couple stress theory of plates and shells. J. Appl. Math. Mech. (ZAMM) (2018).  https://doi.org/10.1002/zamm.201700317 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Lassonde School of EngineeringYork UniversityTorontoCanada
  2. 2.Centro de Investigación Científica de Yucatán, A.C.MéridaMexico

Personalised recommendations