Advertisement

An efficient finite strip procedure for initial post-buckling analysis of thin-walled members

  • Pusong Ma
  • Bin HeEmail author
  • Yuan Fang
  • Yanmei Jiao
  • Haonan Qi
Original
  • 23 Downloads

Abstract

An efficient procedure based on the semi-analytical finite strip method with invariant matrices is developed and applied to analyze the initial post-buckling of thin-walled members. Nonlinear strain–displacement equations are introduced in the manner of the von Karman assumption for the classical thin plate theory, and the formulations of the finite strip methods are deduced from the principle of the minimum potential energy. In order to improve the computational efficiency, an analytical integral of the stiffness matrix is transformed into matrix multiple calculation with introducing invariant matrices which can be integrated in advance only once. Three commonly employed benchmark problems are tested with proposed method and other state-of-the-art methods. The corresponding comparison results show that: (1) this finite strip method is proved to be a feasible and accurate tool; (2) compared with the calculation process of the conventional finite strip methods, the proposed procedure is much more efficient since it requires the integration of the stiffness matrix only once no matter how many iterations are needed; and (3) the advantage of time-saving is greatly remarkable as the number of iterations increases.

Keywords

Invariant matrix Thin-walled members Initial post-buckling Geometrical nonlinear Semi-analytical finite strip method 

Notes

Acknowledgements

The research is financed by Science Challenge Project in China (JCKY2016212A 506-0104), Natural Science Foundation of China (11472135), Natural Science Foundation of Jiangsu Province, China (BK20130911).

References

  1. 1.
    Jones, R.M.: Buckling of Bars, Plates, and Shells. Bull Ridge Corporation, Blacksburg (2006)Google Scholar
  2. 2.
    Bloom, F., Coffin, D.: Handbook of Thin Plate Buckling and Postbuckling. Chapman and Hall/CRC, Boca Raton (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ferri, A.M.H.: Buckling and Postbuckling Structures: Experimental, Analytical and Numerical Studies. World Scientific, Singapore (2008)Google Scholar
  4. 4.
    Eslami, M.R.: Eslami, Jacobs: Buckling and Postbuckling of Beams, Plates, and Shells. Springer, New York (2018)CrossRefGoogle Scholar
  5. 5.
    Ni, X.Y., Prusty, B.G., Hellier, A.K.: Buckling and post-buckling of isotropic and composite stiffened panels: a review on analysis and experiment (2000–2012). Trans. R. Inst. Naval. Archit. Part A1 Int. J. Marit. Eng. 157, 9–29 (2015)Google Scholar
  6. 6.
    Loughlan, J., Hussain, N.: The in-plane shear failure of transversely stiffened thin plates. Thin-Walled Struct 81, 225–235 (2014)CrossRefGoogle Scholar
  7. 7.
    Cheung, Y.K., Tham, L.G.: The Finite Strip Method. CRC Press, Boca Raton (1997)Google Scholar
  8. 8.
    Smith, T.R.G., Sridharan, S.: A finite strip method for the post-locally-buckled analysis of plate structures. Int. J. Mech. Sci. 20(12), 833–842 (1978)CrossRefGoogle Scholar
  9. 9.
    Lengyel, P., Cusens, A.R.: A finite strip method for the geometrically nonlinear analysis of plate structures. Int. J. Numer. Methods Eng. 19(3), 331–340 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gierlinski, J.T., Smith, T.R.G.: The geometric non-linear analysis of thin-walled structures by finite strips. Thin-Walled Struct. 2(1), 27–50 (1984)CrossRefGoogle Scholar
  11. 11.
    Azizian, Z.G., Dawe, D.J.: Analysis of the Large Deflection Behaviour of Laminated Composite Plates Using the Finite Strip Method. Composite Structures 3, pp. 677–691. Springer, Dordrecht (1985)Google Scholar
  12. 12.
    Dawe, D.J., Lam, S.S.E., Azizian, Z.G.: Finite strip post-local-buckling analysis of composite prismatic plate structures. Comput. Struct. 48(6), 1011–1023 (1993)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, S., Dawe, D.J.: Finite strip large deflection and post-overall-buckling analysis of diaphragm-supported plate structures. Comput. Struct. 61(1), 155–170 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Dawe, D.J.: Finite Strip Buckling and Postbuckling Analysis. Buckling and Postbuckling of Composite Plates, pp. 108–153. Springer, Dordrecht (1995)Google Scholar
  15. 15.
    Akhras, G., Cheung, M.S., Li, W.: Geometrically nonlinear finite strip analysis of laminated composite plates. Compos. Part B Eng. 29(4), 489–495 (1998)CrossRefGoogle Scholar
  16. 16.
    Zou, G., Qiao, P.: Higher-order finite strip method for postbuckling analysis of imperfect composite plates. J. Eng. Mech. 128(9), 1008–1015 (2002)CrossRefGoogle Scholar
  17. 17.
    Zou, G.P., Lam, S.S.E.: Post-buckling analysis of imperfect laminates using finite strips based on a higherc—plate theory. Int. J. Numer. Methods Eng. 56(15), 2265–2278 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Chen, Q., Qiao, P.: Post-buckling analysis of composite plates under combined compression and shear loading using finite strip method. Finite Elem. Anal. Des. 83, 33–42 (2014)CrossRefGoogle Scholar
  19. 19.
    Ovesy, H.R., Loughlan, J., Assaee, H.: The compressive post-local bucking behaviour of thin plates using a semi-energy finite strip approach. Thin-Walled Struct. 42(3), 449–474 (2004)CrossRefGoogle Scholar
  20. 20.
    Assaee, H., Ovesy, H.R., Hajikazemi, M.: A semi-energy finite strip non-linear analysis of imperfect composite laminates subjected to end-shortening. Thin-Walled Struct. 60, 46–53 (2012)CrossRefGoogle Scholar
  21. 21.
    Ovesy, H.R., Assaee, H., Hajikazemi, M.: Post-buckling of thick symmetric laminated plates under end-shortening and normal pressure using semi-energy finite strip method. Comput. Struct. 89(9–10), 724–732 (2011)CrossRefGoogle Scholar
  22. 22.
    Hajikazemi, M., Ovesy, H.R., Sadr-Lahidjani, M.H.: A semi-energy finite strip method for post-buckling analysis of relatively thick anti-symmetric cross-ply laminates. Key Eng. Mater. 471–472, 426–431 (2011)CrossRefGoogle Scholar
  23. 23.
    Ovesy, H.R., Hajikazemi, M., Assaee, H.: A novel semi energy finite strip method for post-buckling analysis of relatively thick anti-symmetric laminated plates. Adv. Eng. Softw. 48(1), 32–39 (2012)CrossRefGoogle Scholar
  24. 24.
    Ghannadpour, S.A.M., Ovesy, H.R.: An exact finite strip for the calculation of relative post-buckling stiffness of I-section struts. Int. J. Mech. Sci. 50(9), 1354–1364 (2008)zbMATHCrossRefGoogle Scholar
  25. 25.
    Hajikazemi, M., Ovesy, H.R., Assaee, H., et al.: Post-buckling finite strip analysis of thick functionally graded plates. Struct. Eng. Mech. 49(5), 569–595 (2014)CrossRefGoogle Scholar
  26. 26.
    Nikolić, M., Hajduković, M., Milašinović, D.D., et al.: Hybrid MPI/OpenMP cloud parallelization of harmonic coupled finite strip method applied on reinforced concrete prismatic shell structure. Adv. Eng. Softw. 84, 55–67 (2015)CrossRefGoogle Scholar
  27. 27.
    Khayat, M., Poorveis, D., Moradi, S.: Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method. Steel Compos. Struct. 22(2), 301–321 (2016)CrossRefGoogle Scholar
  28. 28.
    Borković, A., Kovačević, S., Milašinović, D.D., et al.: Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method. Thin-Walled Struct. 117, 63–88 (2017)CrossRefGoogle Scholar
  29. 29.
    Yanlin, G., Shaofan, C.: Postbuckling interaction analysis of cold-formed thin-walled channel sections by finite strip method. Thin-Walled Struct. 11(3), 277–289 (1991)CrossRefGoogle Scholar
  30. 30.
    Milašinović, D.D., Majstorović, D., Vukomanović, R.: Quasi static and dynamic inelastic buckling and failure of folded-plate structures by a full-energy finite strip method. Adv. Eng. Softw. 117, 136–152 (2018)CrossRefGoogle Scholar
  31. 31.
    Zhu, D.S., Cheung, Y.K.: Postbuckling analysis of shells by spline finite strip method. Comput. Struct. 31(3), 357–364 (1989)CrossRefGoogle Scholar
  32. 32.
    Pham, C.H.: Shear buckling of plates and thin-walled channel sections with holes. J. Constr. Steel Res. 128, 800–811 (2017)CrossRefGoogle Scholar
  33. 33.
    Qiao, P., Chen, Q.: Post-local-buckling of fiber-reinforced plastic composite structural shapes using discrete plate analysis. Thin-Walled Struct. 84, 68–77 (2014)CrossRefGoogle Scholar
  34. 34.
    Kwon, Y.B., Hancock, G.J.: A nonlinear elastic spline finite strip analysis for thin-walled sections. Thin-Walled Struct. 12(4), 295–319 (1991)CrossRefGoogle Scholar
  35. 35.
    Van Erp, G.M., Menken, C.M.: Initial post-buckling analysis with the spline finite-strip method. Comput. Struct. 40(5), 1193–1201 (1991)zbMATHCrossRefGoogle Scholar
  36. 36.
    Sheikh, A.H., Mukhopadhyay, M.: Geometric nonlinear analysis of stiffened plates by the spline finite strip method. Comput. Struct. 76(6), 765–785 (2000)CrossRefGoogle Scholar
  37. 37.
    Eccher, G., Rasmussen, K.J.R., Zandonini, R.: Geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled structures. Thin-Walled Struct. 47(2), 219–232 (2009)CrossRefGoogle Scholar
  38. 38.
    Yao, Z., Rasmussen, K.J.R.: Material and geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled steel structures—analytical developments. Thin-Walled Struct. 49(11), 1359–1373 (2011)CrossRefGoogle Scholar
  39. 39.
    Yao, Z., Rasmussen, K.J.R.: Material and geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled steel structures. Numer. Investig. 49(11), 1374–1391 (2011)Google Scholar
  40. 40.
    Shahrestani, M.G., Azhari, M., Foroughi, H.: Elastic and inelastic buckling of square and skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite strip method. Acta Mech. 229(5), 2079–2096 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Ovesy, H.R., Ghannadpour, S.A.M., Morada, G.: Geometric non-linear analysis of composite laminated plates with initial imperfection under end shortening, using two versions of finite strip method. Compos. Struct. 71(3–4), 307–314 (2005)CrossRefGoogle Scholar
  42. 42.
    Ovesy, H.R., GhannadPour, S.A.M., Morada, G.: Post-buckling behavior of composite laminated plates under end shortening and pressure loading, using two versions of finite strip method. Compos. Struct. 75(1–4), 106–113 (2006)CrossRefGoogle Scholar
  43. 43.
    Fazilati, J., Ovesy, H.R.: Dynamic instability analysis of composite laminated thin-walled structures using two versions of FSM. Compos. Struct. 92(9), 2060–2065 (2010)CrossRefGoogle Scholar
  44. 44.
    Ovesy, H.R., Fazilati, J.: Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches. Compos. Struct. 94(3), 1250–1258 (2012)CrossRefGoogle Scholar
  45. 45.
    Bhaskar, K., Varadan, T.K.: Classical Plate Theory. Plates: Theories and Applications, pp. 11–32. Wiley, New York (2014)Google Scholar
  46. 46.
    Yamaki, N.: Postbuckling behavior of rectangular plates with small initial curvature loaded in edge compression–(continued). J. Appl. Mech. 27(2), 335–342 (1960)zbMATHCrossRefGoogle Scholar
  47. 47.
    Yamaki, N.: Experiments on the postbuckling behavior of square plates loaded in edge compression. J. Appl. Mech. 28(2), 238–244 (1961)CrossRefGoogle Scholar
  48. 48.
    Huishen, S., Jianwu, Z.: Perturbation analyses for the postbuckling of simply supported rectangular plates under uniaxial compression. Appl. Math. Mech. 9(8), 793–804 (1988)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering MechanicsNanjing Tech UniversityNanjingChina

Personalised recommendations