Advertisement

Archive of Applied Mechanics

, Volume 89, Issue 12, pp 2449–2461 | Cite as

Effective conductivity and the effect of electric current on thermal stress around an arbitrarily shaped inhomogeneity

  • K. Song
  • H. P. Song
  • P. SchiavoneEmail author
  • C. F. GaoEmail author
Original
  • 128 Downloads

Abstract

We consider the electric, thermal and elastic fields in an infinite conductor or semiconductor plate containing an arbitrarily shaped inhomogeneity. Complex variable and numerical methods are used to discuss effective conductivities and the effect of electric current on the thermal stress distribution. Our results show that the effective electric and thermal conductivities depend strongly on the shape and size of the inhomogeneity. In addition, the electric current generates considerable thermal stress in the vicinity of the inhomogeneity allowing for the possibility of enhancing or neutralizing any thermal stress induced by heat flux. Detailed analyses indicate that the remote electric current suppresses the maximum normal stress while either suppressing or enhancing the maximum shear and hoop stresses around an arbitrarily shaped inhomogeneity depending on the material parameters and shape of the inhomogeneity. Our findings also allow us to conclude that the electric current suppresses maximum normal and shear stresses on the interface in the case of a triangular inhomogeneity, which, of course, dramatically reduces the threat of interface debonding which is known to be one of the main causes of failure in composites. This research provides a theoretical basis for the prediction of the effective performance as well as for the control of thermal stress in composites.

Keywords

Electric current Thermal stress Arbitrarily shaped inhomogeneity Effective conductivity 

Notes

Acknowledgements

K. Song appreciates the support of the China Scholarship Council. H. P. Song and C. F. Gao acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 11872203 and 11202099), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Schiavone thanks the Natural Sciences and Engineering Research Council of Canada for their support through a Discovery Grant (Grant # RGPIN 155112).

References

  1. 1.
    Ajayan, P.M., Tour, J.M.: Materials science: nanotube composites. Nature 447(7148), 1066 (2007).  https://doi.org/10.1038/4471066a CrossRefGoogle Scholar
  2. 2.
    Brandt, J., Drechsler, K., Arendts, F.J.: Mechanical performance of composites based on various three-dimensional woven-fibre preforms. Compos. Sci. Technol. 56(3), 381–386 (1996).  https://doi.org/10.1016/0266-3538(95)00135-2 CrossRefGoogle Scholar
  3. 3.
    Sanchez, F., Ince, C.: Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 69(7–8), 1310–1318 (2009).  https://doi.org/10.1016/j.compscitech.2009.03.006 CrossRefGoogle Scholar
  4. 4.
    Liu, S., Shi, B., Siddique, A., Du, Y., Sun, B., Gu, B.: Numerical analyses on thermal stress distribution induced from impact compression in 3D carbon fiber/epoxy braided composite materials. J. Therm. Stress. 41(7), 903–919 (2018).  https://doi.org/10.1080/01495739.2018.1437000 CrossRefGoogle Scholar
  5. 5.
    Wu, L.: Bounds on the effective thermal conductivity of composites with imperfect interface. Int. J. Eng. Sci. 48(9), 783–794 (2010).  https://doi.org/10.1016/j.ijengsci.2010.04.005 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rabinovitch, O.: Impact of thermal loads on interfacial debonding in FRP strengthened beams. Int. J. Solids Struct. 47(24), 3234–3244 (2010).  https://doi.org/10.1016/j.ijsolstr.2010.08.003 CrossRefzbMATHGoogle Scholar
  7. 7.
    Murakami, G.: A stress singularity parameter approach for evaluating the interfacial reliability of plastic encapsulated LSI devices. J. Electron. Packag. 111, 243 (1989).  https://doi.org/10.1115/1.3226542 CrossRefGoogle Scholar
  8. 8.
    Hasebe, N., Bucher, C., Heuer, R.: Analyses of thermal conduction and stress induced by electric current in an infinite thin plate with an elliptical hole. J. Therm. Stress. 32(10), 1065–1086 (2009).  https://doi.org/10.1080/01495730903103143 CrossRefGoogle Scholar
  9. 9.
    Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Thermal stress induced by electric current in the vicinity of an elliptic inclusion in an infinite plate. J. Therm. Stress. 42(8), 976–992 (2019).  https://doi.org/10.1080/01495739.2019.1607789 CrossRefGoogle Scholar
  10. 10.
    Song, H., Song, K., Gao, C.: Temperature and thermal stress around an elliptic functional defect in a thermoelectric material. Mech. Mater. 130, 58–64 (2019).  https://doi.org/10.1016/j.mechmat.2019.01.008 CrossRefGoogle Scholar
  11. 11.
    Birman, V.: Control of fracture at the interface of dissimilar materials using randomly oriented inclusions and networks. Int. J. Eng. Sci. 130, 157–174 (2018).  https://doi.org/10.1016/j.ijengsci.2018.05.011 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Colombi, P., Bassetti, A., Nussbaumer, A.: Analysis of cracked steel members reinforced by pre-stress composite patch. Fatigue Fract. Eng. Mater. Struct. 26(1), 59–66 (2003).  https://doi.org/10.1046/j.1460-2695.2003.00598.x CrossRefGoogle Scholar
  13. 13.
    Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Electric current induced thermal stress around a bi-material interface crack. Eng. Fract. Mech. 208, 1–12 (2019).  https://doi.org/10.1016/j.engfracmech.2019.01.004 CrossRefGoogle Scholar
  14. 14.
    Todoroki, A.: Electric current analysis of CFRP using perfect fluid potential flow. Trans. Jpn. Soc. Aeronaut. Space Sci. 55(3), 183–190 (2012).  https://doi.org/10.2322/tjsass.55.183 CrossRefGoogle Scholar
  15. 15.
    Song, H.P., Gao, C.F., Li, J.: Two-dimensional problem of a crack in thermoelectric materials. J. Therm. Stress. 38(3), 325–337 (2015).  https://doi.org/10.1080/01495739.2015.1015369 CrossRefGoogle Scholar
  16. 16.
    Parkus, H.: Thermoelastisity. Blaisdell Publishing Company, Waltham (1968)Google Scholar
  17. 17.
    Muskhelishvili, N.I.: Some Basic problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975)zbMATHGoogle Scholar
  18. 18.
    Wang, P., Wang, B.L.: Thermoelectric fields and associated thermal stresses for an inclined elliptic hole in thermoelectric materials. Int. J. Eng. Sci. 119, 93–108 (2017).  https://doi.org/10.1016/j.ijengsci.2017.06.018 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Song, K., Song, H.P., Gao, C.F.: Unavoidable electric current caused by inhomogeneities and its influence on measured material parameters of thermoelectric materials. J. Appl. Phys. 123(12), 124105 (2018).  https://doi.org/10.1063/1.5011778 CrossRefGoogle Scholar
  20. 20.
    Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Thermal stress around an elliptic hole weakened by electric current in an infinite thermoelectric plate. J. Mech. Mater. Struct. 14(1), 179–191 (2019).  https://doi.org/10.2140/jomms.2019.14.179 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Song, K., Song, H.P., Li, M., Schiavone, P., Gao, C.F.: Effective properties of a thermoelectric composite containing an elliptic inhomogeneity. Int. J. Heat Mass Transf. 135, 1319–1326 (2019).  https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.088 CrossRefGoogle Scholar
  22. 22.
    Wang, S., Dai, M., Ru, C.Q., Gao, C.F.: Stress field around an arbitrarily shaped nanosized hole with surface tension. Acta Mech. 225(12), 3453–3462 (2014).  https://doi.org/10.1007/s00707-014-1148-7 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, H., Wang, L., He, Y., Hu, Y., Zhu, J., Jiang, B.: Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl. Therm. Eng. 88, 363–368 (2015).  https://doi.org/10.1016/j.applthermaleng.2014.10.071 CrossRefGoogle Scholar
  24. 24.
    Lu, H., Liu, Y., Huang, W.M., Wang, C., Hui, D., Fu, Y.Q.: Controlled evolution of surface patterns for ZnO coated on stretched PMMA upon thermal and solvent treatments. Compos. Part B Eng. 132, 1–9 (2018).  https://doi.org/10.1016/j.compositesb.2017.08.009 CrossRefGoogle Scholar
  25. 25.
    Dunstan, D.J.: The size effect in the mechanical strength of semiconductors and metals: strain relaxation by dislocation-mediated plastic deformation. J. Mater. Res. 32(21), 4041–4053 (2017).  https://doi.org/10.1557/jmr.2017.300 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics & AstronauticsNanjingChina
  2. 2.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations