Skip to main content
Log in

Dynamics and motion control of a capsule robot with an opposing spring

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Non-classical locomotion systems have the perspective for a wide application in the vast fields of bio-medical and maintenance technology. Capsule bots are small, simple, and reliable realizations with a great potential for practical application. In this paper, the motion of a capsule-type mobile robot along a straight line on a rough horizontal plane is studied applying analytical and experimental methods. The robot consists of a housing and an internal body attached to the housing by a spring. The motion of the system is generated by a force that acts between the housing and the internal body and changes periodically in a pulse-width mode. The average velocity of the motion of the robot is studied as a function of the excitation parameters. The results from the model-based and experimental investigations agree with each other. It can be concluded that the presented robot design can be a basis for the creation of mobile robotic systems with locomotion properties that can be controlled by the parameters of a periodic actuation force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbott, J.J., Nagy, Z., Beyeler, F., Nelson, B.: Robotics in the small. IEEE Robot. Autom. Mag. 14(2), 92–103 (2007)

    Article  Google Scholar 

  2. Becker, F., Zimmermann, K., Volkova, T., Minchenya, V.T.: An amphibious vibration-driven microrobot with a piezoelectric actuator. Regul. Chaot. Dyn. 18(1–2), 63–74 (2013)

    Article  MATH  Google Scholar 

  3. Becker, F., Lysenko, V., Minchenya, V.T., Kunze, O., Zimmermann, K.: Locomotion principles for microrobots based on vibrations. Microactuators and Micromechanisms, pp. 91–102. Springer, Cham (2017)

    Chapter  Google Scholar 

  4. Bogue, R.: Miniature and microrobots: a review of recent developments. Ind. Robot. 42(2), 98–102 (2015)

    Article  Google Scholar 

  5. Bolotnik, N.N., Figurina, T.Y.: Optimal control of the rectilinear motion of a rigid body on a rough plane my means of the motion of two internal masses. J. Appl. Math. Mech. 72(2), 126–135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolotnik, N.N., Figurina, T.Y., Chernousko, F.L.: Optimal control of the rectilinear motion of a two-body system in a resistive medium. J. Appl. Math. Mech. 76(1), 1–4 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bolotnik, N.N., Nunuparov, A.M., Chashchukhin, V.G.: Capsule-type vibration-driven robot with an electromagnetic actuator and an opposing spring: dynamics and control of motion. J. Comput. Syst. Sci. Int. 55(6), 986–1000 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chashchukhin, V.G.: Simulation of dynamics and determination of control parameters of inpipe minirobot. J. Comput. Syst. Sci. Int. 47(5), 806–811 (2008)

    Article  MATH  Google Scholar 

  9. Chernousko, F.L.: On the motion of a body containing a movable internal mass. Dokl. Phys. 50(11), 593–597 (2005)

    Article  Google Scholar 

  10. Chernousko, F.L.: Analysis and optimization of the motion of a body controlled by a movable internal mass. J. Appl. Math. Mech. 70(6), 915–941 (2006)

    MathSciNet  Google Scholar 

  11. Chernousko, F.L.: The optimal periodic motions of a two-mass system in a resistant medium. J. Appl. Math. Mech. 72(2), 116–125 (2008)

    Article  MathSciNet  Google Scholar 

  12. Chernousko, F.L.: Motion of a body along a plane under the influence of movable internal masses. Dokl. Phys. 61(10), 494–498 (2016)

    Article  Google Scholar 

  13. Chernousko, F.L.: Two-dimensional motions of a robot under the influence of movable internal masses. In: Matveenko, V.P., Krommer, M., Belyaev, A.K., Irschik, H. (eds.) Dynamics and Control of Advanced Structures and Machines: Contributions from the 3rd International Workshop, Perm, Russia, pp. 49–56. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  14. Diller, E., Sitti, M.: Micro-scale mobile robotics. Found Trends Robot. 2(3), 143–259 (2013)

    Article  Google Scholar 

  15. Egorov, A.G., Zakharova, O.S.: The energy-optimal motion of a vibration-driven robot in a resistive medium. J. Appl. Math. Mech. 74(4), 443–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Egorov, A.G., Zakharova, O.S.: The energy-optimal motion of a vibration-driven robot in a medium with a inherited law of resistance. J. Comput. Syst. Sci. Int. 54(3), 495–503 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang, H.B., Xu, J.: Dynamic analysis and optimization of a three-phase control mode of a mobile system with an internal mass. J. Vib. Control 74(4), 443–451 (2011)

    MathSciNet  Google Scholar 

  18. Farahani, A.A., Suratgar, A.A., Talebi, H.A.: Optimal controller design of legless piezo capsubot movement. Int. J. Adv. Robot. Syst. 10(2), 126 (2013)

    Article  Google Scholar 

  19. Figurina, T.Y.: Optimal control of the motion of a two-body system along a straight line. J. Comput. Syst. Sci. Int. 46(2), 227–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gradetsky, V.G., Knyazkov, M.M., Fomin, M.M., Chashchukhin, V.G.: Mechanics of miniature robots. Nauka (2010). (in Russian)

  21. Hariri, H.H., Soh, G.S., Foong, S., Wood, K.: Locomotion study of a standing wave driven piezoelectric miniature robot for bi-directional motion. IEEE T Robot 33(3), 742–747 (2017)

    Article  Google Scholar 

  22. Huda, M.N., Yu, H.: Modelling and motion control of a novel double parallel mass capsubot. In: 18th IFAC World Congress, IFAC Proceedings, vol. 44(1), pp. 8120–8125 (2011)

  23. Huda, M.N., Yu, H.: Trajectory tracking control of an underactuated capsubot. Auton. Robots 39(2), 183–198 (2015)

    Article  Google Scholar 

  24. Huda, M.N., Yu, H., Wane, S.O.: Self-contained capsubot propulsion mechanism. Int. J. Autom. Comput. 8(3), 348–356 (2011)

    Article  Google Scholar 

  25. Huda, M.N., Yu, H., Goodwin, M.J.: Experimental study of a capsubot for two dimensional movements. In: Proceedings of 2012 UKACC International Conference on Control, pp 108–113 (2012)

  26. Huda, M.N., Yu, H., Cang, S.: Behaviour-based control approach for the trajectory tracking of an underactuated planar capsule robot. IET Control Theory Appl. 9(2), 163–175 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ivanov, A.P., Sakharov, A.V.: Dynamics of a rigid body carrying moving masses and a rotor on a rough plane. Nelineinaya Dinamika (Russ. J. Nonlinear Dyn.) 8(4), 763–772 (2012). (in Russian)

    Article  Google Scholar 

  28. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, H., Furuta, K., Chernousko, F.L.: Motion generation of the capsubot using internal force and static friction. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp 6575–6580 (2006)

  30. Liu, P., Huda, M.N., Tang, Z., Sun, L.: A self-propelled robotic system with a visco-elastic joint: dynamics and motion analysis. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00722-3

    Article  Google Scholar 

  31. Liu, Y., Yu, H., Yang, T.: Analysis and control of a capsubot. In: 17th IFAC World Congress, IFAC Proceedings, vol. 41(2), pp. 756 – 761 (2008)

  32. Liu, Y., Pavlovskaya, E., Hendry, D., Wiercigroch, M.: Vibro-impact responses of a capsule systems with various friction models. Int. J. Mech. Sci. 72, 39–54 (2013a)

    Article  Google Scholar 

  33. Liu, Y., Wiercigroch, M., Pavlovskaya, E., Peng, Z.K.: Forward and backward motion control of a vibro-impact capsule system. Int. J. Mech. Sci. 74, 2–11 (2013b)

    Article  Google Scholar 

  34. Liu, Y., Wiercigroch, M., Pavlovskaya, E., Yu, H.: Modelling of a vibro-impact capsule system. Int. J. Non-Linear Mech. 70, 30–46 (2015)

    Article  Google Scholar 

  35. Liu, Y., Islam, S., Pavlovskaya, E., Wiercigroch, M.: Optimization of the vibro-impact capsule system. J. Mech. Eng. 62, 430–439 (2016a)

    Article  Google Scholar 

  36. Liu, Y., Pavlovskaya, E., Wiercigroch, M.: Experimental verification of the vibro-impact capsule model. Nonlinear Dyn. 83, 1029–1041 (2016b)

    Article  Google Scholar 

  37. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rao, C.R.: Linear Statistical Inference and Its Applications. Wiley, New York (1965)

    MATH  Google Scholar 

  39. Rios, S.A., Fleming, A.J., Yong, Y.K.: Miniature resonant ambulatory robot. IEEE Robot. Autom. Lett. 2(1), 337–343 (2017)

    Article  Google Scholar 

  40. Sahu, B., Taylor, C., Leang, K.: Emerging challenges of microactuators for nanoscale positioning assembly and manipulation. J. Manuf. Sci. Eng. 132(3), 030917-1–030917-16 (2010)

    Article  Google Scholar 

  41. Sakharov, A.V.: Rotation of a body with two movable internal masses on a rough plane. J. Appl. Math. Mech. 79(2), 132–141 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., Diller, E.: Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103(2), 205–224 (2015)

    Article  Google Scholar 

  43. Sun, L., Sun, P., Qin, X.: Study on micro robot in small pipe. In: Proc. of International Conference on Control’ 98, Swansea, pp 1212–1217 (1998)

  44. Yan, Y., Liu, Y., Liao, M.: A comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints. Nonlinear Dyn. 89, 1063–1087 (2015)

    Article  Google Scholar 

  45. Yu, H., Huda, M.N., Wane, S.O.: A novel acceleration profile for the motion control of capsubots. In: 2011 IEEE International Conference on Robotics and Automation, pp 2437–2442 (2011)

  46. Zhan, X., Xu, J., Fang, H.: Planar locomotion of a vibration-driven system with two internal masses. Appl. Math. Model. 40(2), 871–885 (2016)

    Article  MathSciNet  Google Scholar 

  47. Zhan, X., Xu, J., Fang, H.: A vibration-driven planar locomotion robot–shell. Robotica 36(9), 1402–1420 (2018)

    Article  Google Scholar 

  48. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion with a Focus on Nonpedal Motion Systems. Springer, Berlin (2009a)

    MATH  Google Scholar 

  49. Zimmermann, K., Zeidis, I., Bolotnik, N., Pivovarov, M.: Dynamics of a two-module vibration-driven system moving along a rough horizontal plane. Multibody Syst. Dyn. 22, 199–219 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research work reported here was partly supported by the Deutsche Forschungsgemeinschaft (Grant ZIM 540 / 19-2) and the Russian Foundation for Basic Research (Grant 17-51-12025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Zeidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunuparov, A., Becker, F., Bolotnik, N. et al. Dynamics and motion control of a capsule robot with an opposing spring. Arch Appl Mech 89, 2193–2208 (2019). https://doi.org/10.1007/s00419-019-01571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01571-8

Keywords

Navigation