Advertisement

FEM analysis of a multiferroic nanocomposite: comparison of experimental data and numerical simulation

  • Matthias LabuschEmail author
  • Veronica Lemke
  • Carolin Schmitz-Antoniak
  • Jörg Schröder
  • Samira Webers
  • Heiko Wende
Original
  • 55 Downloads

Abstract

In this contribution, we analyze the properties of two-phase magneto-electric (ME) composites. Such ME composite materials have raised scientific attention in the last decades due to many possible applications in a wide range of technical devices. Since the effective magneto-electric properties significantly depend on the microscopic morphology, we investigate in more detail the changes in the in-plane polarization due to an applied magnetic field. It was shown in previous works that it is possible to grow vertically aligned nanopillars of magnetostrictive cobalt ferrite in a piezoelectric barium titanate matrix by pulsed laser deposition. Based on x-ray linear dichroism, the displacements of titanate ions in the matrix material can be measured due to an applied magnetic field near the boundary of the interface between the matrix and the nanopillars. Here, we focus on (1–3) fiber-induced composites, based on previous experiments, where cobalt ferrite nanopillars are embedded in a barium titanate matrix. In the numerical simulations, we adjusted the boundary value problem to match the experimental setup and compare the results with previously made assumptions of the in-plane polarizations. A further focus is taken on the deformation behavior of the nanopillar over its whole height. Such considerations validate the assumption of the distortion of the nanopillars under an external magnetic field. Furthermore, we analyze the resulting magneto-electric coupling coefficient.

Keywords

Magneto-electro-mechanical coupling FEM analysis Nanopillars Multiferroics 

Notes

Acknowledgements

We gratefully acknowledge the financial support by the “Deutsche Forschungsgemeinschaft” (DFG), research group “Ferroische Funktionsmaterialien - Mehrskalige Modellierung und experimentelle Charakterisierung”, Project 1 (SCHR 570/12-2) and Project 2 (WE 2623/13-2).

References

  1. 1.
    Astrov, D.N.: Magnetoelectric effect in chromium oxide. J. Exp. Theor. Phys. 40, 1035–1041 (1961)Google Scholar
  2. 2.
    Berlincourt, D., Jaffe, H.: Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev. 111, 143–148 (1958).  https://doi.org/10.1103/PhysRev.111.143 CrossRefGoogle Scholar
  3. 3.
    Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008). ISSN 1476-1122CrossRefGoogle Scholar
  4. 4.
    Bichurin, M.I., Petrov, V.M., Srinivasan, G.: Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 68, 054402 (2003)CrossRefGoogle Scholar
  5. 5.
    Bichurin, M.I., Petrov, V.M., Averkin, S.V., Liverts, E.: Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J. Appl. Phys. 107(5), 053904 (2010)CrossRefGoogle Scholar
  6. 6.
    Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)CrossRefGoogle Scholar
  7. 7.
    Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007). ISSN 1476-1122CrossRefGoogle Scholar
  8. 8.
    Crottaz, O., Rivera, J.-P., Revaz, B., Schmid, H.: Magnetoelectric effect of \(\text{ Mn }_3\text{ B }_7\text{ O }_{13}\text{ I }\) boracite. Ferroelectrics 204, 125–133 (1997)CrossRefGoogle Scholar
  9. 9.
    Dent, A.C., Bowen, C.R., Stevens, R., Cain, M.G., Stewart, M.: Effective elastic properties for unpoled barium titanate. J. Eur. Ceram. Soc. 27, 3739–3743 (2007)CrossRefGoogle Scholar
  10. 10.
    Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007)CrossRefGoogle Scholar
  11. 11.
    Harshé, G., Dougherty, J.P., Newnham, R.E.: Theoretical modeling of multilayer magnetoelectric composites. Int. J. Appl. Electromagn. Mater. 4, 145–159 (1993)Google Scholar
  12. 12.
    Harshé, G., Dougherty, J.P., Newnham, R.E.: Theoretical modeling of 3–0/0–3 magnetoelectric composites. Int. J. Appl. Electromagn. Mater. 4, 161–171 (1993)Google Scholar
  13. 13.
    Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRefGoogle Scholar
  14. 14.
    Huang, J.H., Kuo, W.-S.: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81, 1378–1386 (1997)CrossRefGoogle Scholar
  15. 15.
    Jayachandran, K.P., Guedes, J.M., Rodrigues, H.C.: A generic homogenization model for magnetoelectric multiferroics. J. Intell. Mater. Syst. Struct. 25, 1243–1255 (2014)CrossRefGoogle Scholar
  16. 16.
    Jin, K., Aboudi, J.: Macroscopic behavior prediction of multiferroic composites. Int. J. Eng. Sci. 94, 226–241 (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)CrossRefGoogle Scholar
  18. 18.
    Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.-A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lee, J.S., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, Z., Chan, S.-K., Grimsditch, M.H., Zouboulis, E.S.: The elastic and electromechanical properties of tetragonal \(\text{ BaTiO }_3\) single crystals. J. Appl. Phys. 70, 7327–7332 (1991)CrossRefGoogle Scholar
  21. 21.
    Li, Z., Fisher, S., Liu, J.Z., Nevitt, M.V.: Single-crystal elastic constants of Co-Al and CoFe spinels. J. Mater. Sci. 26, 2621–2624 (1991)CrossRefGoogle Scholar
  22. 22.
    Liu, G., Nan, C.W., Xu, Z., Chen, H.: Coupling interaction in multiferroic \(\text{ BaTiO }_3\)\(\text{ CoFe }_2\text{ o }_4\) nanostructures. J. Phys. D Appl. Phys. 38, 2321–2326 (2005)CrossRefGoogle Scholar
  23. 23.
    Martin, L.W., Chu, Y.-H., Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 68(46), 89–133 (2010). ISSN 0927-796XCrossRefGoogle Scholar
  24. 24.
    Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86, 1225–1276 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nan, C.-W., Liu, G., Lin, Y., Chen, H.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94(19), 197203 (2005)CrossRefGoogle Scholar
  26. 26.
    Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007). ISSN 1476-1122CrossRefGoogle Scholar
  27. 27.
    Rivera, J.-P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite. Ferroelectrics 161, 165–180 (1994)CrossRefGoogle Scholar
  28. 28.
    Rivera, J.-P., Schmid, H.: On the birefringence of magnetoelectric \(\text{ BiFeO }_3\). Ferroelectrics 204, 23–33 (1997)CrossRefGoogle Scholar
  29. 29.
    Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRefGoogle Scholar
  30. 30.
    Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4/\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields. Nat. Commun. 4, 1–8 (2013)CrossRefGoogle Scholar
  31. 31.
    Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4/\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields: supplementary information. Nat. Commun. 4, (2013)Google Scholar
  32. 32.
    Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch. Appl. Mech. 73, 533–552 (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Schröder, J., Labusch, M., Keip, M .A.: Algorithmic two-scale transition for magneto-electro-mechanically coupled problems \(\text{ FE }^2\)-scheme: localization and homogenization. Cmiamae 302, 253–280 (2016)Google Scholar
  34. 34.
    Shi, Y., Gao, Y.: A nonlinear magnetoelectric model for magnetoelectric layered composite with coupling stress. J. Magn. Magn. Mater. 360, 131–136 (2014)CrossRefGoogle Scholar
  35. 35.
    Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)CrossRefGoogle Scholar
  36. 36.
    Srinivas, S., Li, J.Y., Zhou, Y.C., Soh, A.K.: The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99(4), 043905 (2006)CrossRefGoogle Scholar
  37. 37.
    van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)Google Scholar
  38. 38.
    Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. Nat. Asia Pac. Asia Mater. 2, 61–68 (2010)Google Scholar
  40. 40.
    Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R.: Multiferroic \(\text{ BaTiO }_3\)\(\text{ CoFe }_2\text{ o }_4\) nanostructures. Science 303(5658), 661–663 (2004).  https://doi.org/10.1126/science.1094207. ISSN 0036-8075CrossRefGoogle Scholar
  41. 41.
    Zheng, Y.X., Cao, Q.Q., Zhang, C.L., Xuan, H.C., Wang, L.Y., Wang, D.H., Du, Y.W.: Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline \(\text{ CoFe }_2\text{ o }_4\). J. Appl. Phys. 110(4), 043908 (2011).  https://doi.org/10.1063/1.3624661 CrossRefGoogle Scholar
  42. 42.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput. Methods Appl. Mech. Eng. 199, 3250–3269 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthias Labusch
    • 1
    Email author
  • Veronica Lemke
    • 1
  • Carolin Schmitz-Antoniak
    • 2
  • Jörg Schröder
    • 1
  • Samira Webers
    • 3
  • Heiko Wende
    • 3
  1. 1.Department of Civil Engineering, Institute of Mechanics, Faculty of EngineeringUniversity Duisburg-EssenEssenGermany
  2. 2.Research Center JülichPeter-Grünberg-Institute (PGI-6)JülichGermany
  3. 3.Faculty of Physics/Experimental Physics - AG Wende and Center for Nanointegration Duisburg-Essen (CENIDE)University Duisburg-EssenDuisburgGermany

Personalised recommendations