Archive of Applied Mechanics

, Volume 89, Issue 4, pp 609–628 | Cite as

Modelling and simulation methods applied to coupled problems in porous-media mechanics

  • Wolfgang EhlersEmail author
  • Arndt Wagner
Review Article


Continuum mechanics usually considers the theoretical and computational description of standard single-phasic materials in the framework of either solid mechanics, fluid mechanics or gas dynamics. However, growing complexity in material modelling combined with the request of users leads to a growing interest in porous-media mechanics, where porous solid materials with fluid or gaseous pore content are investigated on a macroscopic scale. In this regard, the present article reviews the theoretical and numerical framework for the description of geomechanical and biomechanical problems including elastic, elasto-plastic and visco-elastic solid behaviour partly combined with electro-active properties. For this purpose, the Theory of Porous Media is applied for an elegant consideration of the coupling phenomena of porous solids with pore fluids, no matter if the fluids have to be treated as inert fluids or as fluid mixtures. In the sense of a review article, different computational examples are presented to illuminate the possibilities and challenges of porous-media mechanics.


Coupled problems Theory of Porous Media Consolidation process Slope failure Hydraulic fracturing Electro-active materials Medical drug delivery 

Mathematics Subject Classification

74L15 74E10 74F10 74E05 74F20 74S05 92C10 



We would like to thank the German Research Foundation (DFG) for financial support of the project both within the Cluster of Excellence in Simulation Technology (SimTech) under Grant Number EXC 310 and within the Collaborative Research Centre “Interface-Driven Multi-Field Processes in Porous Media” under Grant Number CRC 1313 at the University of Stuttgart.


  1. 1.
    Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976)Google Scholar
  2. 2.
    Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)CrossRefzbMATHGoogle Scholar
  4. 4.
    de Boer, R.: Trends in Continuum Mechanics of Porous Media, vol. 18. Theory and Applications of Transport in Porous Media. Springer, Dodrecht (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)CrossRefGoogle Scholar
  6. 6.
    Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)CrossRefGoogle Scholar
  7. 7.
    Truesdell, C.: Rational Thermodynamics, 2nd edn. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ehlers, W.: On thermodynamics of elasto-plastic porous media. Arch. Mech. 41, 73–93 (1989)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Baupraxis-FEM’98, pp. 391–400. Ernst & Sohn, Berlin (1998)Google Scholar
  11. 11.
    Ehlers, W., Ellsiepen, P., Ammann, M.: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. Int. J. Numer. Methods Eng. 52, 503–526 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ehlers, W., Acartürk, A., Karajan, N.: Advances in modelling saturated soft biological tissues and chemically active gels. Arch. Appl. Mech. 80, 467–478 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ehlers, W., Karajan, N., Markert, B.: An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233–251 (2009)CrossRefGoogle Scholar
  14. 14.
    Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand. Int. J. Numer. Anal. Methods Geomech. 37(8), 787–809 (2013)CrossRefGoogle Scholar
  15. 15.
    Ehlers, W., Häberle, K.: Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer. Transp. Porous Med. 114, 525–556 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schenke, M., Ehlers, W.: Parallel solution of volume-coupled multi-field problems using an Abaqus-PANDAS software interface. Proc. Appl. Math. Mech. 15, 419–420 (2015)CrossRefGoogle Scholar
  17. 17.
    Hashin, Z.: Analysis of composite materials-a survey. ASME J. Appl. Mech. 50, 481–505 (1983)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018)CrossRefGoogle Scholar
  19. 19.
    Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  21. 21.
    Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964)Google Scholar
  22. 22.
    Wieners, C., Graf, T., Ammann, M., Ehlers, W.: Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics. Computat. Mech. 36, 409–420 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Dalton, J.: On the expansion of elastic fluids by heat. Essay IV of Mem. Lit. Philos. Soc. Manch. 5, 595–602 (1802)Google Scholar
  24. 24.
    de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)CrossRefGoogle Scholar
  25. 25.
    Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Strucut. 31, 1063–1084 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elastoplastic solid materials. Int. J. Solids Struct. 35, 4597–4617 (1998)CrossRefzbMATHGoogle Scholar
  27. 27.
    Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 67, 69–85 (1988)CrossRefzbMATHGoogle Scholar
  28. 28.
    Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comput. 10, 99–121 (1993)CrossRefGoogle Scholar
  30. 30.
    Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis in partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)CrossRefzbMATHGoogle Scholar
  31. 31.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRefGoogle Scholar
  32. 32.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  33. 33.
    Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRefzbMATHGoogle Scholar
  36. 36.
    Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)CrossRefGoogle Scholar
  37. 37.
    Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ehlers, W., Luo, C.: A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing. Comput. Methods Appl. Mech. Eng. 315, 348–368 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ehlers, W., Luo, C.: A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Part II: the crack-opening indicator. Comput. Methods Appl. Mech. Eng. 341, 429–442 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Acartürk, A.: Simulation of charged hydrated porous media, Dissertation, Report No. II-18 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)Google Scholar
  41. 41.
    Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transp. Porous Med. 34, 179–191 (1999)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic intervertebral disc. Dissertation Thesis, Report No. II-19 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)Google Scholar
  43. 43.
    Ehlers, W., Wagner, A.: Constitutive and computational aspects in tumor therapies of multiphasic brain tissue. In: Holzapfel, G.A., Kuhl, E. (eds.) Computer Models in Biomechanics: from Nano to Macro, pp. 263–276. Springer, Dordrecht (2013)CrossRefGoogle Scholar
  44. 44.
    Ehlers, W., Wagner, A.: Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput. Methods Biomech. Biomed. Eng. 18, 861–879 (2015)CrossRefGoogle Scholar
  45. 45.
    Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)CrossRefzbMATHGoogle Scholar
  46. 46.
    Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA (PNAS) 91, 2076–2080 (1994)CrossRefGoogle Scholar
  47. 47.
    Fink, D., Wagner, A., Ehlers, W.: Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. J. Comput. Sci. 24, 101–115 (2018)CrossRefGoogle Scholar

Further Reading

  1. 48.
    Biot, M.A.: Le problème de la consolidation de matières argileuses sous une charge. Annales de la Société scientifique de Bruxelles B55, 110–113 (1935)Google Scholar
  2. 49.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefzbMATHGoogle Scholar
  3. 50.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)Google Scholar
  4. 51.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)Google Scholar
  5. 52.
    Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 53.
    Biot, M.A.: Variational irreversible thermodynamics of heat and mass transfer in porous solids: new concept and methods. Q. Appl. Math. 36, 1–38 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 54.
    de Boer, R.: Theory of Porous Media. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  8. 55.
    Borja, R.I., Regueiro, R.A.: Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Eng. 193, 3837–3870 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 56.
    Ehlers, W.: Porous media in the light of history. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics–Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics (LAMM) vol. 1, pp. 211–227. Springer, Heidelberg (2014)Google Scholar
  10. 57.
    Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)zbMATHGoogle Scholar
  11. 58.
    Bishop, A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959)Google Scholar
  12. 59.
    Skempton, A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds.) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960)Google Scholar
  13. 60.
    de Boer, R., Ehlers, W.: The development of the concept of effective stresses. Acta Mech. 83, 77–92 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 61.
    Lade, P., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)CrossRefGoogle Scholar
  15. 62.
    Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)CrossRefzbMATHGoogle Scholar
  16. 63.
    Jiang, Y., Einav, I., Liu, M.: A thermodynamic treatment of partially saturated soils revealing the structure of effective stress. J. Mech. Phys. Solids 100, 131–146 (2017)MathSciNetCrossRefGoogle Scholar
  17. 64.
    Ehlers, W., Ammann, M., Diebels, S.: h-adaptive FE methods applied to single- and multiphase problems. Int. J. Numer. Methods Eng. 54, 219–239 (2002)CrossRefzbMATHGoogle Scholar
  18. 65.
    Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In: Schrefler, B.A. (ed.) Environmental Geomechanics, CISM Courses and Lectures No. 417, pp. 1–81. Springer, Wien (2001)Google Scholar
  19. 66.
    Boone, T.J., Ingraffea, A.R.: A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Numer. Anal. Methods Geomech. 14, 27–47 (1990)CrossRefGoogle Scholar
  20. 67.
    Boone, T.J., Detournay, E.: Response of a vertical hydraulic fracture intersecting a poroelastic formation bounded by semi-infinite impermeable elastic layers. Int. J. Rock Mech. Min. Sci. Geomech. 27, 189–197 (1990)Google Scholar
  21. 68.
    Detournay, E.: Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 4, 35–45 (2004)CrossRefGoogle Scholar
  22. 69.
    Heider, Y., Reiche, S., Siebert, P., Markert, B.: Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data. Eng. Fract. Mech. 202, 116–134 (2018)CrossRefGoogle Scholar
  23. 70.
    Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13, 367–398 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 71.
    Markert, B., Heider, Y.: Coupled multi-field continuum methods for porous media fracture. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) Recent Trends in Computational Engineering-CE2014, pp. 167–180. Springer, Berlin (2015)CrossRefGoogle Scholar
  25. 72.
    Pillai, U., Heider, Y., Markert, B.: A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Comput. Mater. Sci. 153, 36–47 (2018)CrossRefGoogle Scholar
  26. 73.
    Remij, E.W., Remmers, J.J.C., Huyghe, J.M., Smeulders, D.M.J.: The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 74.
    Ateshian, G.A.: Mixture theory for modeling biological tissues: Illustrations from articular cartilage. In: Holzapfel, G., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp. 1–51. Springer, Cham (2017)Google Scholar
  28. 75.
    Ding, J., Remmers, J.J.C., Leszczynski, S., Huyghe, J.M.: Swelling driven crack propagation in large deformation in ionized hydrogel. J. Appl. Mech. 85, 021007 (2018)CrossRefGoogle Scholar
  29. 76.
    Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transp. Porous Media 34, 129–141 (1999)CrossRefGoogle Scholar
  30. 77.
    Huyghe, J.M., Molenaar, M.M., Baajens, F.P.: Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. 129, 776–785 (2007)CrossRefGoogle Scholar
  31. 78.
    Huyghe, J.M., Wilson, W., Malakpoor, K.: On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. J. Biomech. Eng. 131, 044504 (2009)CrossRefGoogle Scholar
  32. 79.
    Huyghe, J.M.: Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations. Anais da Academia Brasileira de Cincias 82, 145–151 (2010)CrossRefGoogle Scholar
  33. 80.
    Kraaijeveld, F.: Propagating discontinuities in ionized porous media. Dissertation Thesis, TU of Eindhoven (2009)Google Scholar
  34. 81.
    Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRefGoogle Scholar
  35. 82.
    Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRefGoogle Scholar
  36. 83.
    Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91, 2076–2080 (1994)CrossRefGoogle Scholar
  37. 84.
    Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (2013)Google Scholar
  38. 85.
    Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol 14, 931–965 (2015)CrossRefGoogle Scholar
  39. 86.
    Holzapfel, G.A.: Biomechanics of soft tissue. Handb Mater Behav Model 3, 1049–1063 (2001)Google Scholar
  40. 87.
    Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11), 1115–1121 (1997)CrossRefGoogle Scholar
  41. 88.
    Linninger, A.A., Somayaji, M.R., Mekarsk, M., Zhang, L.: Prediction of convection enhanced drug delivery to the human brain. J. Theor. Biol. 250, 125–138 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 89.
    Ricken, T., Schwarz, A., Bluhm, J.: A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput. Mater. Sci. 39, 124–136 (2007)CrossRefGoogle Scholar
  43. 90.
    Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.M.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34, 1304–1321 (2006)CrossRefGoogle Scholar
  44. 91.
    Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92, 119–143 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations