Advertisement

Effect of corrosion damage on a pipeline burst pressure and repairing methods

  • M. Amara
  • O. Bouledroua
  • M. Hadj MelianiEmail author
  • Z. Azari
  • M. Tahar Abbess
  • G. Pluvinage
  • Z. Bozic
Original
  • 7 Downloads

Abstract

On the basis of the calculation of the stress field around the corrosion-damaged areas on the external part of a pipeline used for the transport of hydrocarbons, an analysis of the effect of the level of post-repair burst pressure by composite patches is proposed. This work examines some points of views on the burst pressure standards calculation on real test on pipeline with external corrosion defects. This study divided to three parts. In the first, an inspection is given for a real pipe exhibiting a surface corrosion defect. The corrosion defects were collected and divided into six important defects. The internal pressure has increased to the burst of pipeline. The second part illustrated a numerical study of the defects interaction effect on the safety of pipeline. The third part of this study is showing a finite element analysis of repaired pipe using the composite repair; we will study the effect of the composite sleeve number on the structural integrity of the pipe. The principle of failure assessment (FAD) diagram is described, and particularly, the definition of the non- dimensional applied crack tip loading \({k}_{\mathrm{r}}\), the non- dimensional net applied stress (or load) \({S}_{\mathrm{r}}\) or \({L}_{\mathrm{r}}\) is given. The interest lays in the fact that many pipes defects are scratch or gouge types. In the FAD, results demonstrated that the composite repair method does not affect the interpolation curve and, at the same time, had a slightly effect on the function point.

Keywords

Pipeline Burst test Corroded pipe Multiple corrosion Defects interaction FAD Composite repair 

Notes

References

  1. 1.
    Hadj Meliani, M., Bouledroua, O., Alhussein, A., Matvienko, Y.G., Pluvinage, G.: Some aspects sandblasting and hydrogen on the material master failure curve in engineering fracture mechanics. Anales de Mecánica de la Fractura, vol. 32 (2015)Google Scholar
  2. 2.
    Hadj Meliani, M., Azari, Z., Matvienko, Yu. G., Pluvinage, G.: The effect of hydrogen on the master failure curve of APL 5L gas pipe steels. Procedia Eng. 10, 942–947, (2011).  https://doi.org/10.1016/j.proeng.2011.04.155
  3. 3.
    Hadj Meliani, M., Bouledroua, O., Ould-M’beirick, M., El-miloudi, K., Neggaz, Dj., Nateche, T., El-azzizi, A., Bokort, H., Houari, F., Pluvinage, G.: The Two-Parameter Approach for Fracture Mechanics: Some Industrial Applications, Fracture at all Scales, Springer, Berlin, pp. 105–134 (2017)Google Scholar
  4. 4.
    Roberts, K.A., Pick, R.J.: Correction for longitudinal stress in the assessment of corroded line pipe. In: Proceedings of Second International Pipeline Conference (IPC 1998), Calgary, Alberta, Canada, American Society of Mechanical Engineers, pp. 553–561 (1998)Google Scholar
  5. 5.
    Ritchie, D., Last, S.: Burst criteria of corroded pipelines—defect acceptance criteria, Paper 32. In: Proceedings of the EPRG/PRC 10th Biennial Joint Technical Meeting on Line Pipe Research, Cambridge, UK, pp. 32-1–32-11 (1995)Google Scholar
  6. 6.
    Mok, D.R.B., Pick, R.J., Glover, A.G., Hoff, R.: Bursting of line pipe with long external corrosion. Int. J. Press. Vessels Pip. 46, 195–216 (1991)CrossRefGoogle Scholar
  7. 7.
    Hadj Meliani, M., Matvienko, Y.G., Pluvinage, G.: Corrosion defect assessment on pipes using limit analysis and notch fracture mechanics. Eng. Fail. Anal. (2010).  https://doi.org/10.1016/j.engfailanal.2010.09.006 Google Scholar
  8. 8.
    Elazzizi, A., Hadj Meliani, M., Khelil, A., Pluvinage, G., Matvienko, Y.G.: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement. Int. J Hydrogen Energy, 40(5), 2295–2302Google Scholar
  9. 9.
    Hadj Meliani, M., Bouledroua, O., Azari, Z., Sorour, A., Merah, N., Pluvinage, G.: The inspections, standards and repairing methods for pipeline with composite: a review and case study. In: Ambriz, R.R. et al. (eds.) Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture, Springer International Publishing, AG, (2018).  https://doi.org/10.1007/978-3-319-70365-7_17
  10. 10.
    Matvienko, Y.G.: Local fracture criterion to describe failure assessment diagrams for a body with crack/notch. Int. J. Fract. 124, 107–12 (2003)CrossRefGoogle Scholar
  11. 11.
    Adib-Ramezani, H., Jeong, J., Pluvinage, G.: Structural integrity evaluation of X52 gas pipes subjected to the external corrosion defects using the SINTAP procedure. Int. J. Press Vessels Pip. 83, 420–432 (2006)CrossRefGoogle Scholar
  12. 12.
    Adib, H., Jallouf, S., Schmitt, C., Carmasol, A., Pluvinage, G.: Evaluation of the effect of corrosion defects on the structural integrity of X52 gas pipelines using the SINTAP procedure and notch theory. Int. J. Press Vessels Pip. 84, 123–131 (2007)CrossRefGoogle Scholar
  13. 13.
    Hadj Meliani, M., Azari, Z., Pluvinage, G., Capelle, J.: Gouge assessment for pipes and associated transferability problem. Eng. Fail. Anal. 17, 1117–26 (2010)CrossRefGoogle Scholar
  14. 14.
    Bouledroua, O., Elazzizi, A., Hadj Meliani, M., Pluvinage, G., Matvienko, Y.G.: T-stress estimation by the two-parameter approach for a specimen with a v-shaped notch. J. Appl. Mech. Tech. Phys. 58(3), 546–555 (2017)CrossRefGoogle Scholar
  15. 15.
    Bouledroua, O., Hadj Meliani, M., Pluvinage, G.: Assessment of pipe defects using a constraint-modified failure assessment diagram J. Fail. Anal. Prev.  https://doi.org/10.1007/s11668-016-0221-z (2016)
  16. 16.
    Meriem-Benziane, M., Abdul-Wahab, S.A., Zahloul, H., Babaziane, B., Hadj-Meliani, M., Pluvinage, G.: Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single-and double-bonded composites. Compos. Part B Eng. 77, 431–439 (2015)CrossRefGoogle Scholar
  17. 17.
    Zelmati, D., Ghalloudj, O., Amirat, A.: Correlation between defect depth and defect length through a reliability index when evaluating of the remaining life of steel pipeline under corrosion and crack defects. Eng. Fail. Anal. 79(1), 171–185 (2017)CrossRefGoogle Scholar
  18. 18.
    American National Standard Institute (ANSI)/American Society of Mechanical Engineers (ASME). Manual for determining strength of corroded pipelines, ASME B31G (1984)Google Scholar
  19. 19.
    ASME B31G-2009: Manual for Determining the Remaining Strength of Corroded Pipelines[S]. American Society of Mechanical Engineers, New York (2009)Google Scholar
  20. 20.
    ASME B31G: Manual for Determining the Remaining Strength of Corroded pipelines. Supplement to the ASME B31 Code for Pressure Piping (2012)Google Scholar
  21. 21.
    Canadian Standard Association: Oil and gas pipeline systems. CSA standard Z662-15, Mississauga, Ontario, Canada (2015)Google Scholar
  22. 22.
    DNV-RP-F101: Corroded Pipelines. Det Norske Veritas, Norway (2015)Google Scholar
  23. 23.
  24. 24.
    Chandra, B., Mondal, B.C.: Burst Pressure Assessment for Pipelines With Multiple Corrosion Defects. Canadian society for civil engineering, June 1–4 (2016)Google Scholar
  25. 25.
    Kiefner, J.F., Vieth, P.H.: Evaluating pipe conclusion: PC program speeds new criterion for evaluating corroded pipe. Oil Gas J. 88(34), 91–93 (1990)Google Scholar
  26. 26.
    Pipeline Operator Forum Document: Specifications and requirements for intelligent pig inspection of pipelines. Version 3.2 (2005)Google Scholar
  27. 27.
    SINTAP: Structural Integrity Assessment Procedure, Final Report E-U project BE95-1462 Brite Euram Programme Brussels (1999)Google Scholar
  28. 28.
    Harrisson R.P., Milne, I., Loos more, K.: Assessment of the integrity of structures containing defects. Central Electricity Generating Board Report R/H R6 Revision 1, leatherhzead, surrey, UK (1977)Google Scholar
  29. 29.
    RCC-MRx 2015—EN Design and Construction Rules for mechanical components of nuclear installations: high-temperature, research and fusion reactors, AFCEN, Paris (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Amara
    • 1
  • O. Bouledroua
    • 2
  • M. Hadj Meliani
    • 2
    • 3
    Email author
  • Z. Azari
    • 3
  • M. Tahar Abbess
    • 1
  • G. Pluvinage
    • 3
  • Z. Bozic
    • 4
  1. 1.Laboratory of Mechanics and EnergeticsHassiba Benbouali University of ChlefChlefAlgeria
  2. 2.LPTPMHassiba BenBouali University of ChlefChlefAlgeria
  3. 3.LE3MUniversity of LorraineMetzFrance
  4. 4.Faculty of Mechanical Engineering and Naval ArchitectureUniversity of ZagrebZagrebCroatia

Personalised recommendations