Advertisement

Convergence of the Rayleigh–Ritz Method for buckling analysis of arbitrarily configured I-section beam–columns

  • Hakan OzbasaranEmail author
Original

Abstract

Design of the slender members requires calculation of buckling loads in addition to stress and deflection demand/capacity ratios. The Rayleigh–Ritz Method, which allows one to present approximate closed-form solutions for certain cases, is one of the simplest methods for this purpose. This study evaluates the buckling analysis of the I-section prismatic beam–columns with the Rayleigh–Ritz Method in detail. First, algebraic, trigonometric, and exponential trial functions for various restraint configurations are derived carefully in finite series form. Then, an iterative procedure to calculate buckling loads and modes is described. Finally, a software is developed with Mathematica and the sensitivity of the results and performance to trial function type and the number of terms is investigated over 1000 computer-generated numerical examples, which include doubly and singly symmetric sections, simply supported and cantilever members, intermediate torsional and lateral restraints, transversal concentrated and distributed loads acting above/below the shear center, and axial loads.

Keywords

Buckling I-section Beam–column Rayleigh–Ritz Trial function Intermediate restraint 

Notes

Acknowledgements

This study is supported by the Eskisehir Osmangazi University’s Scientific Research Projects Department (Project ID: 2015-806).

References

  1. 1.
    ANSI/AISC 360-16: Specification for Structural Steel Buildings. American Institute of Steel Construction (2016)Google Scholar
  2. 2.
    Eurocode 3: Design of Steel Structures (EN 1993). European Committee for Standardization (CEN) (2005)Google Scholar
  3. 3.
    Chen, F., Qiao, P.: Buckling of delaminated bi-layer beam--columns. Int. J. Solids Struct. 48, 2485–2495 (2011).  https://doi.org/10.1016/j.ijsolstr.2011.04.020 CrossRefGoogle Scholar
  4. 4.
    Douville, M.-A., Le Grognec, P.: Exact analytical solutions for the local and global buckling of sandwich beam--columns under various loadings. Int. J. Solids Struct. 50, 2597–2609 (2013).  https://doi.org/10.1016/j.ijsolstr.2013.04.013 CrossRefGoogle Scholar
  5. 5.
    Sad Saoud, K., Le Grognec, P.: An enriched 1D finite element for the buckling analysis of sandwich beam--columns. Comput. Mech. 57, 887–900 (2016).  https://doi.org/10.1007/s00466-016-1267-1 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Law, K.H., Gardner, L.: Global instability of elliptical hollow section beam--columns under compression and biaxial bending. Int. J. Steel Struct. 13, 745–759 (2013).  https://doi.org/10.1007/s13296-013-4015-9 CrossRefGoogle Scholar
  7. 7.
    Saoula, A., Meftah, S.A., Mohri, F., Daya, E.M.: Lateral buckling of box beam elements under combined axial and bending loads. J. Constr. Steel Res. 116, 141–155 (2016).  https://doi.org/10.1016/j.jcsr.2015.09.009 CrossRefGoogle Scholar
  8. 8.
    Bedair, O.: Economical design procedures for built-up box sections subject to compression and bi-axial bending. Structures. 1, 51–59 (2015).  https://doi.org/10.1016/j.istruc.2014.09.001 CrossRefGoogle Scholar
  9. 9.
    Giżejowski, M.A., Szczerba, R., Gajewski, M.D., Stachura, Z.: Buckling resistance assessment of steel I-section beam--columns not susceptible to LT-buckling. Arch. Civ. Mech. Eng. 17, 205–221 (2017).  https://doi.org/10.1016/j.acme.2016.09.003 CrossRefGoogle Scholar
  10. 10.
    Tankova, T., Marques, L., Andrade, A., Simões da Silva, L.: A consistent methodology for the out-of-plane buckling resistance of prismatic steel beam--columns. J. Constr. Steel Res. 128, 839–852 (2017).  https://doi.org/10.1016/j.jcsr.2016.10.009 CrossRefGoogle Scholar
  11. 11.
    Ioannidis, G.I., Avraam, T.P.: Lateral-torsional buckling of simply supported beams under uniform bending and axial tensile force. Arch. Appl. Mech. 82, 1393–1402 (2012).  https://doi.org/10.1007/s00419-012-0680-y CrossRefzbMATHGoogle Scholar
  12. 12.
    Orun, A.E., Guler, M.A.: Effect of hole reinforcement on the buckling behaviour of thin-walled beams subjected to combined loading. Thin-Walled Struct. 118, 12–22 (2017).  https://doi.org/10.1016/j.tws.2017.04.034 CrossRefGoogle Scholar
  13. 13.
    Unterweger, H., Taras, A., Feher, Z.: Lateral-torsional buckling behaviour of I-section beam--columns with one-sided rotation and warping restraint. Steel Constr. 9, 24–32 (2016).  https://doi.org/10.1002/stco.201610009 CrossRefGoogle Scholar
  14. 14.
    Mohri, F., Damil, N., Potier-Ferry, M.: Buckling and lateral buckling interaction in thin-walled beam--column elements with mono-symmetric cross sections. Appl. Math. Model. 37, 3526–3540 (2013).  https://doi.org/10.1016/j.apm.2012.07.053 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lei, J., Li, L.: Combined web distortional and lateral-torsional buckling of partially restrained I-section beams. Int. J. Mech. Sci. 131–132, 107–112 (2017).  https://doi.org/10.1016/j.ijmecsci.2017.06.057 CrossRefGoogle Scholar
  16. 16.
    Magnucka-Blandzi, E.: Critical state of a thin-walled beam under combined load. Appl. Math. Model. 33, 3093–3098 (2009).  https://doi.org/10.1016/j.apm.2008.10.014 CrossRefzbMATHGoogle Scholar
  17. 17.
    Mohri, F., Bouzerira, C., Potier-Ferry, M.: Lateral buckling of thin-walled beam--column elements under combined axial and bending loads. Thin-Walled Struct. 46, 290–302 (2008).  https://doi.org/10.1016/j.tws.2007.07.017 CrossRefGoogle Scholar
  18. 18.
    Aristizabal-Ochoa, J.D.: Matrix method for stability and second-order analysis of Timoshenko beam--column structures with semi-rigid connections. Eng. Struct. 34, 289–302 (2012).  https://doi.org/10.1016/j.engstruct.2011.09.010 CrossRefGoogle Scholar
  19. 19.
    Monsalve-Cano, J.F., Aristizábal-Ochoa, J.D.: Stability and free vibration analyses of orthotropic 3d beam--columns with singly symmetric section including shear effects. Eng. Struct. 113, 315–327 (2016).  https://doi.org/10.1016/j.engstruct.2016.01.036 CrossRefGoogle Scholar
  20. 20.
    Zhu, Y., Hu, Y., Cheng, C.: Analysis of nonlinear stability and post-buckling for Euler-type beam--column structure. Appl. Math. Mech. 32, 719–728 (2011).  https://doi.org/10.1007/s10483-011-1451-x MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sophianopoulos, D.S., Papachristou, K.S.: In-plane stability of uniform steel beam--columns on a Pasternak foundation with zero end-shortening. Arch. Appl. Mech. 82, 1653–1662 (2012).  https://doi.org/10.1007/s00419-012-0664-y CrossRefzbMATHGoogle Scholar
  22. 22.
    Yuan, Z., Wang, X.: Buckling and post-buckling analysis of extensible beam--columns by using the differential quadrature method. Comput. Math. with Appl. 62, 4499–4513 (2011).  https://doi.org/10.1016/j.camwa.2011.10.029 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kumar, M., Yadav, N.: Buckling analysis of a beam--column using multilayer perceptron neural network technique. J. Franklin Inst. 350, 3188–3204 (2013).  https://doi.org/10.1016/j.jfranklin.2013.07.016 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kucukler, M., Gardner, L., Macorini, L.: Flexural-torsional buckling assessment of steel beam--columns through a stiffness reduction method. Eng. Struct. 101, 662–676 (2015).  https://doi.org/10.1016/j.engstruct.2015.07.041 CrossRefGoogle Scholar
  25. 25.
    White, D.W., Jeong, W.Y., Toğay, O.: Comprehensive stability design of planar steel members and framing systems via inelastic buckling analysis. Int. J. Steel Struct. 16, 1029–1042 (2016).  https://doi.org/10.1007/s13296-016-0070-3 CrossRefGoogle Scholar
  26. 26.
    Ranjbaran, A., Ranjbaran, M.: State-based buckling analysis of beam-like structures. Arch. Appl. Mech. 87, 1555–1565 (2017).  https://doi.org/10.1007/s00419-017-1273-6 CrossRefzbMATHGoogle Scholar
  27. 27.
    Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. für die reine und Angew. Math. (Crelle’s Journal). 1909, 1–61 (1909).  https://doi.org/10.1515/crll.1909.135.1 zbMATHGoogle Scholar
  28. 28.
    Leissa, A.W.: The historical bases of the Rayleigh and Ritz methods. J. Sound Vib. 287, 961–978 (2005).  https://doi.org/10.1016/j.jsv.2004.12.021 CrossRefGoogle Scholar
  29. 29.
    Desai, Y.M., Eldho, T.I., Shah, A.H.: Finite Element Method with Applications in Engineering. Pearson Education, London (2011)Google Scholar
  30. 30.
    Ozbasaran, H.: Optimal design of I-section beam--columns with stress, non-linear deflection and stability constraints. Eng. Struct. 171, 385–394 (2018).  https://doi.org/10.1016/j.engstruct.2018.05.110 CrossRefGoogle Scholar
  31. 31.
    Ozbasaran, H., Aydin, R., Dogan, M.: An alternative design procedure for lateral-torsional buckling of cantilever I-beams. Thin-Walled Struct. 90, 235–242 (2015).  https://doi.org/10.1016/j.tws.2015.01.021 CrossRefGoogle Scholar
  32. 32.
    Yilmaz, T., Kirac, N., Kilic, T.: Lateral-Torsional Buckling of European Wide Flange I-Section Beams. In: Proceedings of the 2nd World Congress on Civil, Structural and Environmental Engineering (CSEE’17), Barcelona (2017)Google Scholar
  33. 33.
    Yilmaz, T., Kirac, N.: Analytical and parametric investigations on lateral torsional buckling of European IPE and IPN beams. Int. J. Steel Struct. 17, 695–709 (2017).  https://doi.org/10.1007/s13296-017-6024-6 CrossRefGoogle Scholar
  34. 34.
    Dou, C., Guo, Y.-L., Pi, Y.-L., Zhao, S.-Y., Bradford, M.A.: Effects of shape functions on flexural-torsional buckling of fixed circular arches. Eng. Struct. 59, 238–247 (2014).  https://doi.org/10.1016/j.engstruct.2013.10.028 CrossRefGoogle Scholar
  35. 35.
    Liu, A., Lu, H., Fu, J., Pi, Y.: Lateral-torsional buckling of circular steel arches under arbitrary radial concentrated load. J. Struct. Eng. 143, 04017129 (2017).  https://doi.org/10.1061/(ASCE)ST.1943-541X.0001858 CrossRefGoogle Scholar
  36. 36.
    Liu, A., Lu, H., Fu, J., Pi, Y.-L.: Lateral-torsional buckling of fixed circular arches having a thin-walled section under a central concentrated load. Thin-Walled Struct. 118, 46–55 (2017).  https://doi.org/10.1016/j.tws.2017.05.002 CrossRefGoogle Scholar
  37. 37.
    Dou, C., Jiang, Z.-Q., Pi, Y.-L., Gao, W.: Elastic buckling of steel arches with discrete lateral braces. Eng. Struct. 156, 12–20 (2018).  https://doi.org/10.1016/j.engstruct.2017.11.028 CrossRefGoogle Scholar
  38. 38.
    Ozbasaran, H., Yilmaz, T.: Shape optimization of tapered I-beams with lateral-torsional buckling, deflection and stress constraints. J. Constr. Steel Res. 143, 119–130 (2018).  https://doi.org/10.1016/j.jcsr.2017.12.022 CrossRefGoogle Scholar
  39. 39.
    Schillinger, D., Papadopoulos, V., Bischoff, M., Papadrakakis, M.: Buckling analysis of imperfect I-section beam--columns with stochastic shell finite elements. Comput. Mech. 46, 495–510 (2010).  https://doi.org/10.1007/s00466-010-0488-y CrossRefzbMATHGoogle Scholar
  40. 40.
    Ozbasaran, H.: Finite differences approach for calculating elastic lateral torsional buckling moment of cantilever I sections. Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 14, 143–152 (2013).  https://doi.org/10.18038/BTD-A.89119 Google Scholar
  41. 41.
    Ozbasaran, H.: A parametric study on lateral torsional buckling of European IPN and IPE cantilevers. Int. J. Civil Environ. Struct. Constr. Archit. Eng. 8, 783–788 (2014)Google Scholar
  42. 42.
    Monterrubio, L.E., Ilanko, S.: Proof of convergence for a set of admissible functions for the Rayleigh–Ritz analysis of beams and plates and shells of rectangular planform. Comput. Struct. 147, 236–243 (2015).  https://doi.org/10.1016/j.compstruc.2014.09.008 CrossRefGoogle Scholar
  43. 43.
    Moreno-García, P., dos Santos, J.V.A., Lopes, H.: A Review and Study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. Arch. Comput. Methods Eng. 25, 785–815 (2018).  https://doi.org/10.1007/s11831-017-9214-7 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. Dover Publications, Mineola (1961)Google Scholar
  45. 45.
    Chajes, A.: Principles of Structural Stability Theory. Prentice-Hall, Upper Saddle River (1974)Google Scholar
  46. 46.
    Yoo, C.H., Lee, S.C.: Stability of Structures: Principles and Applications. Butterworth-Heinemann, Oxford (2011)Google Scholar
  47. 47.
    Vetyukov, Y.: Nonlinear Mechanics of Thin-Walled Structures. Springer, Vienna (2014)CrossRefzbMATHGoogle Scholar
  48. 48.
    Chen, W.-F., Lui, E.M.: Structural Stability: Theory and implementation. PTR Prentice Hall, Upper Saddle River (1993)Google Scholar
  49. 49.
    Trahair, N.S.: Flexural-Torsional Buckling of Structures. CRC, Boca Raton (1993)Google Scholar
  50. 50.
    Galambos, T.V.: Guide to stability design criteria for metal structures. Wiley, London (1998)Google Scholar
  51. 51.
    Chen, W.-F., Atsuta, T.: Theory of Beam--Columns, Volume 1: In-plane Behavior and Design. J. Ross Publishing, Plantation (2008)Google Scholar
  52. 52.
    Chen, W.-F., Atsuta, T.: Theory of Beam--Columns, Volume 2: Space Behavior and Design. J. Ross Publishing, Plantation (2008)Google Scholar
  53. 53.
    Galambos, T.V., Surovek, A.E.: Structural Stability of Steel: Concepts and Applications for Structural Engineers. Wiley, London (2008)CrossRefGoogle Scholar
  54. 54.
    Ziemian, R.D.: Guide to Stability Design Criteria for Metal Structures. Wiley, London (2010)CrossRefGoogle Scholar
  55. 55.
    Bažant, Z.P., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (2010)zbMATHGoogle Scholar
  56. 56.
    Pi, Y.L., Trahair, N.S.: Prebuckling deflections and lateral buckling. I: theory. J. Struct. Eng. 118, 2949–2966 (1992).  https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(2949) CrossRefGoogle Scholar
  57. 57.
    Pi, Y.L., Trahair, N.S.: Prebuckling deflections and lateral buckling. II: applications. J. Struct. Eng. 118, 2967–2985 (1992).  https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(2967) CrossRefGoogle Scholar
  58. 58.
    Ozbasaran, H.: An approximate lateral-torsional buckling mode function for Cantilever I-Beams. Int. J. Civil Environ. Struct. Constr. Archit. Eng. 9, 1401–1404 (2015)Google Scholar
  59. 59.
    Burden, R.L., Faires, J.D.: Numerical Analysis. Cengage Learning, Boston (2010)zbMATHGoogle Scholar
  60. 60.
    Wolfram Research Inc.: Mathematica (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations