Advertisement

Archive of Applied Mechanics

, Volume 89, Issue 4, pp 731–736 | Cite as

An improved engineering approach to assess crack arrays: an Addendum to Arch. Appl. Mech. 84 (2014) 1325–1337

  • Reinhold KienzlerEmail author
  • Franz Dieter Fischer
  • Alexander Wessel
Original
  • 57 Downloads

Abstract

Crack arrays with specific patterns can be found nearly everywhere in nature and play also an important role in structural mechanics. Instead of employing a complicated and advanced numerical investigation, it is useful and often sufficient to estimate energy-release rates and stress-intensity factors of such configurations by simple, engineering-based formulae. To this extend, we improve a previously derived formula with the help of elementary beam theory by accompanying numerical calculations.

Keywords

Crack array Energy-release rate J-integral 

Notes

References

  1. 1.
    Bazant, Z., Ohtsubo, H., Aoh, K.: Stability and post-critical growth of a system of cooling or shrinking cracks. Int. J. Fract. 15, 443–456 (1979)CrossRefGoogle Scholar
  2. 2.
    Neusser, G., Abart, R., Fischer, F.D., Harlov, D., Norbery, N.: Experimental Na/K exchange between alkali feldspar and an NaCl–KCl salt melt: chemically induced fracturing and element partitioning. Contrib. Mineral. Petrol. 164, 341–358 (2012)CrossRefGoogle Scholar
  3. 3.
    Scheidl, K., Schaeffer, A., Petrishcheva, E., Habler, G., Fischer, F.D., Schreuer, J., Abart, R.: Chemically induced fracturing in alkali feldspar. Phys. Chem. Miner. 41, 1–16 (2013)CrossRefGoogle Scholar
  4. 4.
    Petrishcheva, E., Rieder, M., Predan, J., Fischer, F.D., Giester, G., Abart, R.: Diffusion-controlled crack propagation in alkali feldspar. Phys. Chem. Miner. (2018).  https://doi.org/10.1007/s00269-018-0983-9
  5. 5.
    Fischer, F.D., Predan, J., Kienzler, R.: An easy-to-use estimate of the energy-release rate for crack arrays. Arch. Appl. Mech. 84, 1325–1337 (2014)CrossRefGoogle Scholar
  6. 6.
    Kienzler, R., Fischer, F.D., Predan, J.: Eine einfache Abschätzung der Energiefreisetzungsrate bei Mehrfachrissen. Tagungsband der 47. Sitzung des DVM Arbeitskreises Bruchvorgänge, Freiberg. DVM Bericht 2015; 247: 35–44 (2015)Google Scholar
  7. 7.
    Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1987)CrossRefGoogle Scholar
  8. 8.
    Fischer, F. D., Predan, J., Kolednik, O. and Simha, N. K.: Application of material forces to fracture of inhomogeneous materials: illustrative examples. Arch. Appl. Mech. 77: 95–112 (2007) and 78: 835 (2008)Google Scholar
  9. 9.
    Fischer, F.D., Simha, N.K., Predan, J., Schöngrundner, R., Kolednik, O.: On configurational forces at boundaries in fracture mechanics. Int. J. Fract. 174, 61–74 (2012)CrossRefGoogle Scholar
  10. 10.
    Heyder, R., Girsch, G.: Testing of HSH rails in high-speed tracks to minimise rail damage. Wear 258, 1014–1021 (2005)CrossRefGoogle Scholar
  11. 11.
    Wiest, M., Daves, W., Fischer, F.D., Ossberger, H.: Deformation and damage of a crossing nose due to wheel passages. Wear 265, 1431–1438 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Reinhold Kienzler
    • 1
    Email author
  • Franz Dieter Fischer
    • 2
  • Alexander Wessel
    • 1
  1. 1.Department of Production EngineeringUniversity of BremenBremenGermany
  2. 2.Institute of MechanicsMontanuniversität LeobenLeobenAustria

Personalised recommendations