Advertisement

Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems

  • Tatiana I. Becker
  • Valter Böhm
  • Jhohan Chavez Vega
  • Stefan Odenbach
  • Yuriy L. Raikher
  • Klaus Zimmermann
Original
  • 62 Downloads

Abstract

The development of actuator and sensor systems with complex adaptive behavior and operating sensitivity is one of the actual scientific challenges. Smart materials like magneto-sensitive elastomers (MSEs) offer great potential for designing such intelligent devices, because they possess unique magnetic-field-dependent properties. The present paper deals with investigations of the free and forced vibrational behavior displayed by cantilever beams of MSEs containing magnetically soft particles in a uniform magnetic field. It is shown experimentally as well as theoretically that the first bending eigenfrequency of MSE beams depends strongly on the strength of an applied magnetic field. The proposed magneto-mechanical model is based on the vibrational dynamics of thin rods and predicts reliably the amplitude–frequency characteristics depending on the geometric configuration of the MSE and its material parameters. It is found that the vibration response of an MSE beam under kinematic excitation of its base can be modified indirectly by a magnetic field control due to the change of the vibration characteristics. As a result, the resonance can occur in different ranges of the excitation frequency. The dependencies of the amplification ratio on the excitation frequency are obtained experimentally and compared with the result provided by the theoretical model. Moreover, investigations on the potential use of the field-induced plasticity effect of MSEs in form-fit gripper applications are presented. This effect can be used to realize shape adaptable system parts. It is found that the mechanical properties of each component and its concentration within the mixture have an impact on the mechanical behavior of the whole MSE compound. Such parameters as the strength of magnetic field and geometry of the MSE sample have influence on the quality of shape adaptation. The evidence presented provides a good basis for the realization of MSE-based actuator and sensor systems with adaptable sensitivity.

Keywords

Magneto-sensitive elastomer Adaptive sensor element Bending vibrations Eigenfrequency Amplification ratio Shape adaptation Field-induced plasticity 

Notes

Acknowledgements

The work is funded by the research association between the Deutsche Forschungsgemeinschaft (DFG) and the Russian Foundation for Basic Research (RFBR) within PAK907 under the projects DFG PO 2013/1-1, BE 6553/1-1 and RFBR 16-51-12001, as well as by the DFG priority program SPP 1681, projects ZI 540-17/2 and OD18/22-2.

References

  1. 1.
    Kallio, M.: The Elastic and Damping Properties of Magnetorheological Elastomers, vol. 565, p. 146. VVT Publications, Espoo (2005)Google Scholar
  2. 2.
    Varga, Z., Filipcsei, G., Zrínyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47, 227–233 (2006)CrossRefGoogle Scholar
  3. 3.
    Melenev, P., Raikher, Y.L., Rusakov, V.V.: Plasticity of soft magnetic elastomers. Polym. Sci. A 52(4), 430–435 (2010)CrossRefGoogle Scholar
  4. 4.
    Melenev, P., Raikher, Y.L., Stepanov, G., Rusakov, V., Polygalova, L.: Modeling of the field-induced plasticity of soft magnetic elastomers. J. Intell. Mater. Syst. Struct. 22, 531–538 (2011)CrossRefGoogle Scholar
  5. 5.
    Yang, J., Sun, S., Du, H., Alici, G., Yan, T., Li, W.: Fabrication and characterization of magneto-rheological shear-stiffened elastomers. Front. Mater. 10, 2213 (2014)Google Scholar
  6. 6.
    Ivaneyko, D., Toshchevikov, V., Saphiannikova, M., Heinrich, G.: Mechanical properties of magneto sensitive elastomers unification of the continuum mechanics and microscopic theoretical approaches. Soft Matter 10, 2213–2225 (2014)CrossRefGoogle Scholar
  7. 7.
    Chavez Vega, J., Kaufhold, T., Schümann, M., Böhm, V., Zimmermann, K., Odenbach, S.: Soft robotic gripping of sensible objects using field-induced plasticity of magneto-sensitive elastomers. In: Proceedings of the 11th European Magnetic Sensors and Actuators Conference, Torino (2016)Google Scholar
  8. 8.
    Zimmermann, K., Zeidis, I., Böhm, V., Kaufhold, T., Volkova, T., Waske, A., Krautz, M., Schrödner, M., Popp, J., Kästner, M., Spieler, C.: Mechanics of actuators based on magnetic hybrid materials with application for robotics, fluid control and sensor technology. Sci. J. IFToMM Probl. Mech. 57(4), 23–41 (2014)Google Scholar
  9. 9.
    Yang, J., Sun, S.S., Du, H., Li, W.H., Alici, G., Deng, H.X.: A novel magneto-rheological elastomer isolator with negative changing stiffness for vibration reduction. Smart Mater. Struct. 23, 105023 (2014)CrossRefGoogle Scholar
  10. 10.
    Kozlowska, J., Boczkowska, A., Czulak, A., Przybyszewski, B., Holeczek, K., Stanik, R., Gude, M.: Novel MRE/CFRP sandwich structures for adaptive vibration control. Smart Mater. Struct. 25, 035025 (2016)CrossRefGoogle Scholar
  11. 11.
    Hoang, N., Zhang, N., Du, H.: A dynamic absorber with a soft magnetorheological elastomer for powertrain vibration suppression. Smart Mater. Struct. 18, 074009 (2009)CrossRefGoogle Scholar
  12. 12.
    Du, H., Li, W., Zhang, N.: Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Mater. Struct. 20, 105003 (2011)CrossRefGoogle Scholar
  13. 13.
    Becker, F., Börner, S., Lysenko, V., Zeidis, I., Zimmermann, K.: On the mechanics of bristle-bots modeling, simulation and experiments. In: ISR/ROBOTIK 2014, Proceedings of the 45th International Symposium on Robotics, 8th German Conference on Robotics, Munich, Germany, pp. 15–20 (2014)Google Scholar
  14. 14.
    Giomi, L., Hawley-Weld, N., Mahadevan, L.: Swarming, swirling and stasis in sequestered bristle-bots. Proc. R. Soc. A 469, 20120637 (2013)Google Scholar
  15. 15.
    Zimmermann, K., Zeidis, I., Bolotnik, N.N., Pivovarov, M.: Dynamics of a two-module vibration-driven system moving along a rough horizontal plane. Multibody Syst. Dyn. 22, 199–219 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion, pp. 274–276. Springer, Berlin (2009)zbMATHGoogle Scholar
  17. 17.
    Kim, M.S., Yang, K.M., Lee, S.H., Yoon, J.H., Jeong, U.C., Yang, I.H., Oh, J.E.: Variable differential mount apparatus using magnetorheological elastomer. US 8844914 B2, September 30, 2014Google Scholar
  18. 18.
    Thorsteinsson, F., Gudmundsson, I., Lecomte, C.: Prosthetic and orthotic devices having magnetorheological elastomer spring with controllable stiffness. US 9078734 B2, July 14, 2015Google Scholar
  19. 19.
    Li, Y., Li, J., Li, W., Du, H.: A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 23, 123001 (2014)CrossRefGoogle Scholar
  20. 20.
    Ubaidillah, Sutrisno J., Purwanto, A., Mazlan, S.A.: Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv. Eng. Mater. 17(5), 563–597 (2015)CrossRefGoogle Scholar
  21. 21.
    Okatani, Y., Nishida, T., Tadakuma, K.: Development of universal robot gripper using MRa fluid. In: 7th International Conference on Soft Computing and Intelligent Systems and 15th International Symposium on Advanced Intelligent Systems (SCIS and ISIS 2014), Kitakyushu, December 3–6, 2014, Book of Abstacts, pp. 231–235Google Scholar
  22. 22.
    Behrooz, M., Gordaninejad, F.: A flexible micro fluid transport system featuring magnetorheological elastomer. Smart Mater. Struct. 26, 025011 (2016)CrossRefGoogle Scholar
  23. 23.
    Becker, T.I., Chavez Vega, J., Böhm, V., Raikher, Y.L., Stolbov, O.V., Dutz, S., Zhou, M., Odenbach, S., Zimmermann, K.: Investigations of magneto-sensitive elastomers in context of actuator and sensor applications. In: 16th German Ferrofluid Workshop, Dresden, 2017, Book of Abstracts, pp. 92–93Google Scholar
  24. 24.
    Volkova, T.I., Böhm, V., Kaufhold, T., Popp, J., Becker, F., Borin, D.Yu., Stepanov, G.V., Zimmermann, K.: Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic field for sensor applications. J. Magn. Magn. Mater. 431, 262–265 (2017)Google Scholar
  25. 25.
    Becker, T.I., Zimmermann, K., Borin, D.Yu., Stepanov, G.V., Storozhenko, P.A.: Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties. J. Magn. Magn. Mater. 449, 77–82 (2018)Google Scholar
  26. 26.
    Becker, T.I., Raikher, Yu.L., Stolbov, O.V., Böhm, V., Zimmermann, K.: Dynamic properties of magneto-sensitive elastomer cantilevers as adaptive sensor elements. Smart Mater. Struct. 26, 095035 (2017)Google Scholar
  27. 27.
    Gundermann, Th. Odenbach, S.: Investigation of the motion of particles in magnetorheological elastomers by X-\(\mu \)CT. Smart Mater. Struct. 23, 105013 (2014)Google Scholar
  28. 28.
    Kneller, E.: Ferromagnetismus. Springer, Berlin (1962)CrossRefGoogle Scholar
  29. 29.
    Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)CrossRefGoogle Scholar
  30. 30.
    Zakri, T., Laurent, J.P., Vauclin, M.: Theoretical evidence for ’Lichtenecker’s mixture formulae’ based on the effective medium theory. J. Phys. D Appl. Phys. 31, 1589–1594 (1998)CrossRefGoogle Scholar
  31. 31.
    Svetlitsky, V.A.: Dynamics of Rods. Springer, Berlin (2005)Google Scholar
  32. 32.
    Bozorth, R.M.: Ferromagnetism. Wiley-IEEE Press, New York (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tatiana I. Becker
    • 1
  • Valter Böhm
    • 1
  • Jhohan Chavez Vega
    • 1
  • Stefan Odenbach
    • 2
  • Yuriy L. Raikher
    • 3
  • Klaus Zimmermann
    • 1
  1. 1.Technical Mechanics GroupTechnische Universität IlmenauIlmenauGermany
  2. 2.Institute of Fluid MechanicsTechnische Universität DresdenDresdenGermany
  3. 3.Institute of Continuous Media MechanicsUral Branch of Russian Academy of SciencesPermRussia

Personalised recommendations