Archive of Applied Mechanics

, Volume 89, Issue 1, pp 119–132 | Cite as

Elastic deformations in semi-dilute Ni nanorod/hydrogel composites

  • Christoph Schopphoven
  • Kerstin Birster
  • Rouven Schweitzer
  • Christian Lux
  • Shilin Huang
  • Markus Kästner
  • Günter Auernhammer
  • Andreas TschöpeEmail author


Magnetic nanocomposites were prepared by dispersing uniaxial ferromagnetic Ni nanorods in poly(acrylamide) hydrogels. Field alignment of the nanorods during polymerization resulted in a magnetic texture which was explored for field-induced deformations in the elastic composite. At very low particle volume fraction \(<10^{-6}\), the magnetic torque resulted in a local rotation of the nanorods, measured by optical transmission of linearly polarized light, with a field- and orientation dependence in agreement with the Stoner–Wohlfarth model. The local rotation was virtually unaffected by an increase in the volume fraction to \(\sim 10^{-4}\) which suggested negligible interparticle interactions or mutual compensation of opposing contributions. Elastic interactions, mediated by the deformation of the matrix, were investigated by FEM simulations for nanorods of different aspect ratio and relative spatial positions. Complementary experiments were performed by measuring the rotation of individual nanorods using laser scanning confocal microscopy. The results suggest interparticle interactions to be negligible in textured nanorod composites up to a volume fraction of \(10^{-4}\). Macroscopic deformations of Ni nanorod/hydrogel magnetic actuators in this concentration regime are expected to be solely determined by the intrinsic properties of the nanorods which was demonstrated using the example of a torsion cylinder.


Nanorods Hydrogel Magnetic actuator Interparticle interaction Torsion cylinder 



We thank C. Wagner (Saarland University, Physics Department) for providing access to the shear rheometry equipment and M. Hermes and A. Schmidt (University of Cologne, Chemistry Department) for assistance with nanoparticle functionalization. We gratefully acknowledge financial support by the German National Science Foundation DFG in the priority program SPP1681 Grants TS62/4-2, AU321/3-2 and KA3309/2-2.

Supplementary material

419_2018_1461_MOESM1_ESM.pdf (339 kb)
Supplementary material 1 (pdf 338 KB)


  1. 1.
    Zrínyi, M., Barsi, L., Buki, A.: Deformation of ferrogels induced by nonuniform magnetic fields. J. Chem. Phys. 104(21), 8750 (1996)CrossRefGoogle Scholar
  2. 2.
    Khoo, M., Liu, C.: Micro magnetic silicone elastomer membrane actuator. Sens. Actuators A 89(3), 259 (2001)CrossRefGoogle Scholar
  3. 3.
    Shcherbakov, V.P., Winklhofer, M.: Bending of magnetic filaments under a magnetic field. Phys. Rev. E 70, 061803 (2004)CrossRefGoogle Scholar
  4. 4.
    Zimmermann, K., Naletova, V.A., Zeidis, I., Böhm, V., Kolev, E.: Modelling of locomotion systems using deformable magnetizable media. J. Phys.: Condens. Matter 18(38), S2973 (2006)Google Scholar
  5. 5.
    Fahrni, F., Prins, M.W.J., van IJzendoorn, L.J.: Magnetization and actuation of polymeric microstructures with magnetic nanoparticles for application in microfluidics. J. Magn. Magn. Mater. 321(12), 1843 (2009)CrossRefGoogle Scholar
  6. 6.
    Kim, J., Chung, S., Choi, S.E., Lee, H., Kim, J., Kwon, S.: Programming magnetic anisotropy in polymeric microactuators. Nat. Mater. 10, 747 (2011)CrossRefGoogle Scholar
  7. 7.
    Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M.R., Sitti, M.: Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 104(17), 174101 (2014)CrossRefGoogle Scholar
  8. 8.
    Lum, G.Z., Ye, Z., Dong, X., Marvi, H., Erin, O., Hu, W., Sitti, M.: Shape-programmable magnetic soft matter. PNAS 113(41), E6007 (2016)CrossRefGoogle Scholar
  9. 9.
    Hines, L., Petersen, K., Lum, G.Z., Sitti, M.: Soft actuators for small-scale robotics. Adv. Mater. 29(13), 1603483 (2017)CrossRefGoogle Scholar
  10. 10.
    Collin, D., Auernhammer, G.K., Gavat, O., Martinoty, P., Brand, H.R.: Frozen-in magnetic order in uniaxial magnetic gels: preparation and physical properties. Macromol. Rapid Commun. 24(12), 737 (2003)CrossRefGoogle Scholar
  11. 11.
    Stolbov, O.V., Raikher, Y.L., Balasoiu, M.: Modelling of magnetodipolar striction in soft magnetic elastomers. Soft Matter 7, 8484 (2011)CrossRefGoogle Scholar
  12. 12.
    Danas, K., Kankanala, S., Triantafyllidis, N.: Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Sol. 60(1), 120 (2012)CrossRefGoogle Scholar
  13. 13.
    Zubarev, A.: Magnetodeformation of ferrogels and ferroelastomers: effect of microstructure of the particles’ spatial disposition. Phys. A 392(20), 4824 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Metsch, P., Kalina, K.A., Spieler, C., Kästner, M.: A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput. Mater. Sci. 124, 364 (2016)CrossRefGoogle Scholar
  15. 15.
    Ivaneyko, D., Toshchevikov, V., Saphiannikova, M., Heinrich, G.: Mechanical properties of magneto-sensitive elastomers: unification of the continuum-mechanics and microscopic theoretical approaches. Soft Matter 10, 2213 (2014)CrossRefGoogle Scholar
  16. 16.
    Biller, A.M., Stolbov, O.V., Raikher, Y.L.: Modeling of particle interactions in magnetorheological elastomers. J. Appl. Phys. 116(11), 114904 (2014)CrossRefGoogle Scholar
  17. 17.
    Romeis, D., Metsch, P., Kästner, M., Saphiannikova, M.: Theoretical models for magneto-sensitive elastomers: a comparison between continuum and dipole approaches. Phys. Rev. E 95, 042501 (2017)CrossRefGoogle Scholar
  18. 18.
    Stepanov, G., Chertovich, A., Kramarenko, E.: Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler. J. Magn. Magn. Mater. 324(21), 3448 (2012)CrossRefGoogle Scholar
  19. 19.
    Crivaro, A., Sheridan, R., Frecker, M., Simpson, T.W., Von Lockette, P.: Bistable compliant mechanism using magneto active elastomer actuation. J. Intell. Mater. Syst. Struct. 27(15), 2049 (2016)CrossRefGoogle Scholar
  20. 20.
    Monz, S., Tschöpe, A., Birringer, R.: Magnetic properties of isotropic and anisotropic CoFe\({}_{2}\text{ O }_{4}\)-based ferrogels and their application as torsional and rotational actuators. Phys. Rev. E 78, 021404 (2008)CrossRefGoogle Scholar
  21. 21.
    Kimura, T., Umehara, Y., Kimura, F.: Magnetic field responsive silicone elastomer loaded with short steel wires having orientation distribution. Soft Matter 8, 6206 (2012)CrossRefGoogle Scholar
  22. 22.
    Siboni, M., Castañeda, P.P.: A magnetically anisotropic, ellipsoidal inclusion subjected to a non-aligned magnetic field in an elastic medium. Comptes Rendus Mécanique 340(4–5), 205 (2012)CrossRefGoogle Scholar
  23. 23.
    Puljiz, M., Menzel, A.M.: Forces and torques on rigid inclusions in an elastic environment: resulting matrix-mediated interactions, displacements, and rotations. Phys. Rev. E 95, 053002 (2017)CrossRefGoogle Scholar
  24. 24.
    Bender, P., Günther, A., Tschöpe, A., Birringer, R.: Synthesis and characterization of uniaxial ferrogels with Ni nanorods as magnetic phase. J. Magn. Magn. Mater. 323(15), 2055 (2011)CrossRefGoogle Scholar
  25. 25.
    Chippada, U., Yurke, B., Georges, P.C., Langrana, N.A.: A nonintrusive method of measuring the local mechanical properties of soft hydrogels using magnetic microneedles. J. Biomech. Eng. 131(2), 021014 (2009)CrossRefGoogle Scholar
  26. 26.
    Tokarev, A., Aprelev, A., Zakharov, M.N., Korneva, G., Gogotsi, Y., Kornev, K.G.: Multifunctional magnetic rotator for micro and nanorheological studies. Rev. Sci. Instrum. 83(6), 065110 (2012)CrossRefGoogle Scholar
  27. 27.
    Tschöpe, A., Krämer, F., Birster, K., Gratz, M., Birringer, R.: Quantification of magneto-optically active nanorods and inactive aggregates in nickel nanorod colloids. Colloid. Interf. Sci. Commun. 10–11, 11 (2016)CrossRefGoogle Scholar
  28. 28.
    Bender, P., Tschöpe, A., Birringer, R.: Determination of the shear modulus of gelatine hydrogels by magnetization measurements using dispersed nickel nanorods as mechanical probes. J. Magn. Magn. Mater. 346, 152 (2013)CrossRefGoogle Scholar
  29. 29.
    Bender, P., Tschöpe, A., Birringer, R.: Magnetization measurements reveal the local shear stiffness of hydrogels probed by ferromagnetic nanorods. J. Magn. Magn. Mater. 372, 187 (2014)CrossRefGoogle Scholar
  30. 30.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, Weinheim (2007)Google Scholar
  31. 31.
    Krämer, F., Gratz, M., Tschöpe, A.: Analysis of the static magnetic field-dependent optical transmission of Ni nanorod colloidal suspensions. J. Appl. Phys. 120(4), 044301 (2016)CrossRefGoogle Scholar
  32. 32.
    Klein, T., Laptev, A., Günther, A., Bender, P., Tschöpe, A., Birringer, R.: Magnetic-field-dependent optical transmission of nickel nanorod colloidal dispersions. J. Appl. Phys. 106(11), 114301 (2009)CrossRefGoogle Scholar
  33. 33.
    Günther, A., Bender, P., Tschöpe, A., Birringer, R.: Rotational diffusion of magnetic nickel nanorods in colloidal dispersions. J. Phys.: Condens. Matter 23(32), 325103 (2011)Google Scholar
  34. 34.
    Schrittwieser, S., Ludwig, F., Dieckhoff, J., Tschöpe, A., Günther, A., Richter, M., Huetten, A., Brueckl, H., Schotter, J.: Direct protein detection in the sample solution by monitoring rotational dynamics of nickel nanorods. Small 10(2), 407 (2014)CrossRefGoogle Scholar
  35. 35.
    Tschöpe, A., Birster, K., Trapp, B., Bender, P., Birringer, R.: Nanoscale rheometry of viscoelastic soft matter by oscillating field magneto-optical transmission using ferromagnetic nanorod colloidal probes. J. Appl. Phys. 116(18), 184305 (2014)CrossRefGoogle Scholar
  36. 36.
    Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27, 3475 (1991)CrossRefGoogle Scholar
  37. 37.
    Schopphoven, C., Tschöpe, A.: Magnetic anisotropy of nickel nanorods and the mechanical torque in an elastic environment. J. Phys. D. Appl. Phys. 51(11), 115005 (2018)CrossRefGoogle Scholar
  38. 38.
    Nielsch, K., Wehrspohn, R., Fischer, S., Kronmüller, H., Barthel, J., Kirschner, J., Gösele, U., In: Symposium D Nonlithographic and Lithographic Methods of Nanofabrication-From Ultralarge Scale, MRS Proceedings, vol. 636 (2000)Google Scholar
  39. 39.
    Schulz, L., Schirmacher, W., Omran, A., Shah, V.R., Böni, P., Petry, W., Müller-Buschbaum, P.: Elastic torsion effects in magnetic nanoparticle diblock-copolymer structures. J. Phys.: Condens. Matter 22(34), 346008 (2010)Google Scholar
  40. 40.
    Nielsch, K., Müller, F., Li, A.P., Gösele, U.: Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12(8), 582 (2000)CrossRefGoogle Scholar
  41. 41.
    Hardikar, V., Matijevic, E.: Coating of nanosize silver particles with silica. J. Colloid Interf. Sci. 221, 113 (2000)CrossRefGoogle Scholar
  42. 42.
    Roth, M., Franzmann, M., D’Acunzi, M., Kreiter, M., Auernhammer, G.K.: Experimental analysis of single particle deformations and rotations in colloidal and granular systems, arXiv:1106.3623v2 [cond-mat.soft] (2011)
  43. 43.
    Huang, S., Pessot, G., Cremer, P., Weeber, R., Holm, C., Nowak, J., Odenbach, S., Menzel, A.M., Auernhammer, G.K.: Buckling of paramagnetic chains in soft gels. Soft Matter 12, 228 (2016)CrossRefGoogle Scholar
  44. 44.
    Bender, P., Krämer, F., Tschöpe, A., Birringer, R.: Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders. J. Phys. D: Appl. Phys. 48(14), 145003 (2015)CrossRefGoogle Scholar
  45. 45.
    Smallwood, H.M.: Limiting law of the reinforcement of rubber. J. Appl. Phys. 15(11), 758 (1944)CrossRefGoogle Scholar
  46. 46.
    Batchelor, G.K.: Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52(2), 245268 (1972)CrossRefzbMATHGoogle Scholar
  47. 47.
    Puljiz, M., Huang, S., Auernhammer, G.K., Menzel, A.M.: Forces on rigid inclusions in elastic media and resulting matrix–mediated interactions. Phys. Rev. Lett. 117, 238003 (2016)CrossRefGoogle Scholar
  48. 48.
    Halpin, J.C.: Effects of environmental factors on composite materials, AFML Technical Report 67-423 (1969)Google Scholar
  49. 49.
    Gratz, M., Tschöpe, A.: Optical transmission versus ac magnetization measurements for monitoring colloidal Ni nanorod rotational dynamics. J. Phys. D: Appl. Phys. 50(1), 015001 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Christoph Schopphoven
    • 1
  • Kerstin Birster
    • 1
  • Rouven Schweitzer
    • 1
  • Christian Lux
    • 2
  • Shilin Huang
    • 3
    • 4
  • Markus Kästner
    • 2
  • Günter Auernhammer
    • 3
    • 5
  • Andreas Tschöpe
    • 1
    Email author
  1. 1.Physics DepartmentSaarland UniversitySaarbrückenGermany
  2. 2.Institute of Solid MechanicsTechnische Universität DresdenDresdenGermany
  3. 3.Max Planck Institute for Polymer ResearchMainzGermany
  4. 4.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  5. 5.Institute of Physical Chemistry and Polymer Physics, Department of Polymer InterfacesLeibniz Institute of Polymer ResearchDresdenGermany

Personalised recommendations