Archive of Applied Mechanics

, Volume 89, Issue 1, pp 105–117 | Cite as

Hybrid magnetoactive elastomer with a soft matrix and mixed powder

  • Dmitry BorinEmail author
  • Gennady Stepanov
  • Eike Dohmen


This study focusses on a magnetoactive elastomeric composite based on a polydimethylsiloxane matrix highly filled with a mixed magnetic powder. The powder contains a mixture of carbonyl iron and magnetically hard NdFeB alloy spherical microparticles. Magnetoactive elastomer samples with different ratios of the magnetically hard and soft filler were synthesized and characterized using dynamic axial loading. Behavior of the composites was compared with the behavior of a conventional magnetorheological elastomer based solely on magnetically soft particles. It was found that the passive state and active state properties of the magnetoactive composites with mixed powders can be separately tuned. The passive state properties may be changed by pre-magnetization of the magnetically hard particles influencing composite’s remanence, while the active state properties can be controlled by applying external magnetic field. The range of passive tuning and active control depends on the amount of magnetically hard and soft components. Using external fields up to 1500 mT for a pre-magnetization and fields up to 240 mT for investigation of the active control, it was found that the passive change of samples’ storage modulus and loss factor may reach up to \(\sim \) 30–100%, while within active control these parameters can be changed up to \(\sim \) 50–200%.


Magnetoactive elastomer Viscoelastic response Remanence Magnetorheology 



Financial support by Deutsche Forschungsgemeinschaft (DFG) under Grant Bo 3343/2-1 within SPP1681 providing the basis for our investigations is gratefully acknowledged. G.S. would like to acknowledge the support of RFBR under Grant 16-53-12009.


  1. 1.
    Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10, 555 (2000)CrossRefGoogle Scholar
  2. 2.
    Zhou, G.Y., Jiang, Z.Y.: Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field. Smart Mater. Struct. 13, 309 (2004)CrossRefGoogle Scholar
  3. 3.
    Kalio, M.: The Elastic and Damping Properties of Magnetorheological Elastomers. VTT Publications, Espoo (2005)Google Scholar
  4. 4.
    Lanotte, L., Ausanio, G., Iannotti, V., Pepe, G., Carotenuto, G., Netti, P., Nicolais, L.: Magnetic and magnetoelastic effects in a composite material of Ni microparticles in a silicone matrix. Phys. Rev. B 63, 054438 (2001)CrossRefGoogle Scholar
  5. 5.
    Danas, K., Kankanala, S.V., Triantafyllidis, N.: Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60, 120 (2012)CrossRefGoogle Scholar
  6. 6.
    Nikitin, L.V., Mironova, L.S., Stepanov, G.V., Samus, A.N.: The influence of magnetic field on the elastic and viscous properties of magnetoelastics. Polym. Sci. Ser. A 43, 443 (2001)Google Scholar
  7. 7.
    Böse, H.: Viscoelastic properties of silicone-based magnetorheological elastomers. Int. J. Mod. Phys. B 21, 4790 (2007)CrossRefGoogle Scholar
  8. 8.
    Stepanov, G.V., Borin, D.Y., Raikher, Y.L., Melenev, P.V., Perov, N.S.: Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys. Condens. Matter 20, 204121 (2008)CrossRefGoogle Scholar
  9. 9.
    Kchit, N., Bossis, G.: Electrical resistivity mechanism in magnetorheological elastomer. J. Phys. D Appl. Phys. 42, 105505 (2009)CrossRefGoogle Scholar
  10. 10.
    Lanotte, L., Ausanio, G., Hison, C., Iannotti, V., Luponio, C.: The potentiality of composite elastic magnets as novel materials for sensors and actuators. Sens. Actuators A Phys. 106, 56 (2003)CrossRefGoogle Scholar
  11. 11.
    Borin, D., Stepanov, G., Mikhailov, V., Gorbunov, A.: The damping device based on magnetoactive elastomer. Magnetohydrodynamics 43, 437 (2007)Google Scholar
  12. 12.
    Li, Y., Li, J., Li, W., Du, H.: A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 23, 123001 (2014)CrossRefGoogle Scholar
  13. 13.
    Volkova, T., Böhm, V., Kaufhold, T., Popp, J., Becker, F., Borin, D., Stepanov, G., Zimmermann, K.: Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic field for sensor applications. J. Magn. Magn. Mater. 431, 262–265 (2017)CrossRefGoogle Scholar
  14. 14.
    Becker, T. et al.: (submitted) Studies on the dynamical behavior of magneto-sensitive elastomers in application for magnetic field controlled actuator and sensor systems. Arch. Appl. Mech. Submitted to this volumeGoogle Scholar
  15. 15.
    Günther, D., Borin, D., Günther, S., Odenbach, S.: X-ray micro-tomographic characterization of field-structured magnetorheological elastomers. Smart Mater. Struct. 21, 015005 (2012)CrossRefGoogle Scholar
  16. 16.
    Borbáth, T., Günther, S., Borin, D., Gundermann, T., Odenbach, S.: X\(\upmu \)CT analysis of magnetic field-induced phase transitions in magnetorheological elastomers. Smart Mater. Struct. 21, 105018 (2012)CrossRefGoogle Scholar
  17. 17.
    Filipcsei, G., Csetneki, I., Szilgyi, A., Zrinyi, M.: Magnetic field-responsive smart polymer composites. Adv. Polym. Sci. 206, 137–189 (2007)CrossRefGoogle Scholar
  18. 18.
    Stepanov, G.V., Abramchuk, S.S., Grishin, D.A., Nikitin, L.V., Kramarenko, E.Y., Khokhlov, A.R.: Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer 48, 488–95 (2007)CrossRefGoogle Scholar
  19. 19.
    Chertovich, A.V., Stepanov, G.V., Kramarenko, E.Y., Khokhlov, A.R.: New composite elastomers with giant magnetic response. Macromol. Mater. Eng. 295, 336–341 (2010)CrossRefGoogle Scholar
  20. 20.
    Borin, D.Y., Stepanov, G.V., Odenbach, S.: Tuning the tensile modulus of magnetorheological elastomers with magnetically hard powder. J. Phys. Conf. Ser. 412(1), 012040 (2013)CrossRefGoogle Scholar
  21. 21.
    Stepanov, G.V., Borin, D.Y., Kramarenko, E.Y., Bogdanov, V.V., Semerenko, D.A., Storozhenko, P.A.: Magnetoactive elastomer based on magnetically hard filler: synthesis and study of viscoelastic and damping properties. Polym. Sci. Ser. A 56(5), 603–613 (2014)CrossRefGoogle Scholar
  22. 22.
    Stepanov, G.V., Borin, D.Y., Bakhtiiarov, A.V., Storozhenko, P.A.: Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles. Smart Mater. Struct. 26, 035060 (2017)CrossRefGoogle Scholar
  23. 23.
    Schümann, M., Borin, D.Y., Huang, S., Auernhammer, G.K., Müller, R., Odenbach, S.: A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers. Smart Mater. Struct. 26, 095018 (2017)CrossRefGoogle Scholar
  24. 24.
    Kalina, K.A., Brummund, J., Metsch, P., Kästner, M., Borin, D.Y., Linke, J.M., Odenbach, S.: Modeling of magnetic hystereses in soft MREs-filled with NdFeB particles. Smart Mater. Struct. 26, 105019 (2017)CrossRefGoogle Scholar
  25. 25.
    Linke, J., Borin, D.Y., Odenbach, S.: First-order reversal curve analysis of magnetoactive elastomers. RSC Adv. 6, 100407–100416 (2016)CrossRefGoogle Scholar
  26. 26.
    Borin, D.Y., Stepanov, G.V., Odenbach, S.: Stress induced by the striction of hybrid magnetoactive elastic composites. J. Magn. Magn. Mater. (2017). Google Scholar
  27. 27.
    Sorokin, V.V., Sokolov, B.O., Stepanov, G.V., Kramarenko, E.Y.: Controllable hydrophobicity of magnetoactive elastomer coatings. J. Magn. Magn. Mater. (2017). Google Scholar
  28. 28.
    Vaganov, M., Borin, D., Odenbach, S., Raikher, Y.: Effect of local elasticity of the matrix on magnetization loops of hybrid magnetic elastomers. J. Magn. Magn. Mater. (2017). Google Scholar
  29. 29.
    Zubarev, A., Lopez-Lopez, M.T.: (submitted) Rheological properties of magnetic biogels. Arch. Appl. Mech. Submitted to this volumeGoogle Scholar
  30. 30.
    Raikher, Y.L., Stolbov, O.V.: (submitted) Structure magnetostriction of magnetorheological elastomers. Arch. Appl. Mech. Submitted to this volumeGoogle Scholar
  31. 31.
    Borin, D.Y., Odenbach, S.: Initial magnetic susceptibility of the diluted magnetopolymer elastic composites. J. Magn. Magn. Mater. 431, 115–119 (2017)CrossRefGoogle Scholar
  32. 32.
    Schümann, M., Gundermann, T., Odenbach, S.: (submitted) Microscopic investigation of the reasons for field dependent changes of the properties of magnetic hybrid materials using X-ray micro tomography. Arch. Appl. Mech. Submitted to this volumeGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.State Research Center GNIICHTEOSMoscowRussia

Personalised recommendations