Advertisement

The effect of longitudinal cracks on buckling loads of columns

  • Simon Schnabl
  • Igor Planinc
Original
  • 46 Downloads

Abstract

This paper focuses on development of a new mathematical model and its analytical solution for the buckling analysis of elastic longitudinally cracked columns with finite axial adhesion between the cracked sections. Consequently, the analytical solution for buckling loads is derived for the first time. The critical buckling loads are calculated for different crack lengths and various degrees of the contact adhesion. It is shown that the critical buckling loads can be greatly affected by the crack length and degree of the connection between the cracked sections. Finally, the presented results can be used as a benchmark solution.

Keywords

Crack Buckling Column Exact Slip 

Notes

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (Research Core Funding No. P2-0260).

References

  1. 1.
    Okamura, H., Liu, H.W., Chu, C.S.: A cracked column under compression. Eng. Fract. Mech. 1, 547–64 (1969)CrossRefGoogle Scholar
  2. 2.
    Wang, Q., Chase, J.G.: Buckling analysis of cracked column structures and piezoelectric-based repair and enhancement of axial load capacity. Int. J. Struct. Stab. Dyn. 3(1), 17–33 (2003)CrossRefGoogle Scholar
  3. 3.
    Wang, C.Y., Wang, C.M., Aung, T.M.: Buckling of a weakened column. J. Eng. Mech. ASCE 130(11), 1373–6 (2004)CrossRefGoogle Scholar
  4. 4.
    Zhou, L., Huang, Y.: Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns. Struct. Eng. Mech. 22(2), 169–84 (2006)CrossRefGoogle Scholar
  5. 5.
    Loya, J.A., Vadillo, G., Fernández-Sáez, J.: First-order solutions for the buckling loads of Euler-Bernoulli weakened columns. J. Eng. Mech. ASCE 136(5), 674–679 (2010)CrossRefGoogle Scholar
  6. 6.
    Zapata-Medina, D.G., Arboleda-Monsalve, L.G., Aristizabal-Ochoa, J.D.: Static stability formulas of a weakened Timoshenko column: effects of shear deformations. J. Eng. Mech. ASCE 136(12), 1528–36 (2010)CrossRefGoogle Scholar
  7. 7.
    Gurram, S.C.B., Deb, A.: Retrofitting a column with an internal hinge: analytical and numerical study. Pract. Period. Struct. Des. Constr. ASCE 16(1), 24–33 (2011)CrossRefGoogle Scholar
  8. 8.
    Sokól, K.: Linear and nonlinear vibrations of a column with an internal crack. J. Eng. Mech. ASCE 140(5), 04014021 (2014)CrossRefGoogle Scholar
  9. 9.
    Ostachowicz, W.M., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150(2), 191–201 (1991)CrossRefGoogle Scholar
  10. 10.
    Krawczuk, M., Ostachowicz, W.M.: Modelling and vibration analysis of a cantilever composite beam with a transverse open crack. J. Sound Vib. 183(1), 69–89 (1995)CrossRefGoogle Scholar
  11. 11.
    Ranjbaran, A., Ranjbaran, M.: New finite-element formulation for buckling analysis of cracked structures. J. Eng. Mech. ASCE 140(5), 04014014 (2014)CrossRefGoogle Scholar
  12. 12.
    Shirazizadeh, M.R., Shahverdi, H.: An extended finite element model for structural analysis of cracked beam-columns with arbitrary cross-section. Int. J. Mech. Sci. 99, 1–9 (2015)CrossRefGoogle Scholar
  13. 13.
    Eisenberger, M., Ambarsumian, H.: Buckling of columns with internal slide release. Int. J. Struct. Stab. Dyn. 2(4), 593–8 (2002)CrossRefGoogle Scholar
  14. 14.
    Simitses, G.J., Sallam, S., Yin, W.L.: Effect of delamination of axially loaded homogeneous laminated plates. AIAA J. 138(1), 90–8 (1985)Google Scholar
  15. 15.
    Chen, F., Qiao, P.: Buckling of delaminated bi-layer beam-columns. Int. J. Solids Struct. 48, 2485–95 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, Q., Qiao, P.: Buckling analysis of bilayer beam-columns with an asymmetric delamination. Compos. Struct. 188, 363–73 (2018)CrossRefGoogle Scholar
  17. 17.
    Zhang, W., Song, X., Gu, X., Tang, H.: Compressive behavior of longitudinally cracked timber columns retrofitted using FRP sheets. J. Struct. Eng. ASCE 138(1), 90–8 (2012)CrossRefGoogle Scholar
  18. 18.
    Cappello, F., Tumino, D.: Numerical analysis of composite plates with multiple delaminations subjected to uniaxial buckling load. Compos. Sci. Technol. 66, 264–72 (2006)CrossRefGoogle Scholar
  19. 19.
    Parlapalli, M.R., Shu, D.: Buckling of composite beams with two non-overlapping delaminations: lower and upper bounds. Int. J. Mech. Sci. 49, 793–805 (2006)CrossRefGoogle Scholar
  20. 20.
    Østergaard, R.C.: Buckling driven debonding in sandwich columns. Int. J. Solids Struct. 45, 1264–82 (2008)CrossRefGoogle Scholar
  21. 21.
    Kryžanowski, A., Planinc, I., Schnabl, S.: Slip-buckling analysis of longitudinally delaminated composite columns. Eng. Struct. 76, 404–14 (2014)CrossRefGoogle Scholar
  22. 22.
    Qiao, P., Wang, J.: Mechanics and fracture of crack tip deformable bi-material interface. Int. J. Solids Struct. 41, 7423–44 (2004)CrossRefGoogle Scholar
  23. 23.
    Wang, J., Qiao, P.: Analysis of beam-type fracture specimens with crack-tip deformation. Int. J. Fract. 132, 223–48 (2005)CrossRefGoogle Scholar
  24. 24.
    Qiao, P., Shan, L., Chen, F., Wang, J.: Local delamination buckling of laminated composite beams using novel joint deformation models. J. Eng. Mech. ASCE 136(5), 541–50 (2010)CrossRefGoogle Scholar
  25. 25.
    Qiao, P., Chen, F.: On the improved dynamic analysis of delaminated beams. J. Sound Vib. 331, 1143–63 (2012)CrossRefGoogle Scholar
  26. 26.
    Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Mech. Phys. 23, 795–804 (1972)zbMATHGoogle Scholar
  27. 27.
    Schnabl, S., Saje, M., Turk, G., Planinc, I.: Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J. Struct. Eng. ASCE 133(6), 886–894 (2007)CrossRefGoogle Scholar
  28. 28.
    Schnabl, S., Planinc, I.: The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip. Eng. Struct. 32(10), 3103–11 (2010)CrossRefGoogle Scholar
  29. 29.
    Schnabl, S., Planinc, I.: The effect of transverse shear deformation on the buckling of two-layer composite columns with interlayer slip. Int. J. Nonlinear Mech. 46(3), 543–53 (2011)CrossRefGoogle Scholar
  30. 30.
    Kryžanowski, A., Schnabl, S., Turk, G., Planinc, I.: Exact slip-buckling analysis of two-layer composite columns. Int. J. Solids Struct. 46(14–15), 2929–2938 (2009)CrossRefGoogle Scholar
  31. 31.
    Schnabl, S., Planinc, I.: Exact buckling loads of two-layer composite Reissner’s columns with interlayer slip and uplift. Int. J. Solids Struct. 50, 30–37 (2013)CrossRefGoogle Scholar
  32. 32.
    Schnabl, S., Planinc, I.: Buckling of slender concrete-filled steel tubes with compliant interfaces. Latin Am. J. Solids Struct. 14(10), 1837–52 (2017)CrossRefGoogle Scholar
  33. 33.
    Hartmann, F.: The Mathematical Foundation of Structural Mechanics. Springer, Berlin (1985)CrossRefGoogle Scholar
  34. 34.
    Wolfram, S.: Mathematica. Addison-Wesley, Reading (2107)Google Scholar
  35. 35.
    Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Civil Engineering and GeodesyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations