Mean stress effect in multiaxial fatigue limit criteria

  • J. PapugaEmail author
  • R. Halama


The paper deals with evaluating the mean stress effect in multiaxial criteria for fatigue limit estimation, with special emphasis on the mean shear stress effect. The usual practice of accepting the mean normal stress effect and neglecting the effect of static torsion is scrutinized. Two methods—two critical plane criteria, PCr (Papuga Criterion) and QCP (Quadratic parameter on the Critical Plane)—are described, and additional local stress parameters representing the mean torsion effect are implemented. The efficiency of the new implementations is evaluated on a large data set of 407 fatigue limits. Additionally, outputs of two other well-known methods—the Crossland method and the Dang Van method—are provided for comparison. The positive outcome of including the mean shear stress effect is evident not only in cases of applied mean torsion load, but also in cases with purely axial loading or with biaxial configurations.


Mean stress effect Mean torsion load Multiaxial loading Critical plane criteria Fatigue of materials 



This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in science—LQ1602,” by the Grant Agency of the Czech Technical University in Prague (Grant No. SGS17/175/OHK2/3T/12), and also by the Czech Science Foundation (GA15-18274S). The support is gratefully acknowledged.


  1. 1.
    Sines, G.: Behavior of metals under complex static and alternating stresses. In: Sines, G., Waisman, J.L. (eds.) Metal Fatigue, pp. 145–469. McGraw Hill, New York (1959)Google Scholar
  2. 2.
    Smith, J.O.: The effect of range of stress on the torsional fatigue strength of steel. Bull. No. 316, Eng. Exp. Station, University of Illinois, vol. 33 (1939)Google Scholar
  3. 3.
    Papadopoulos, I.V., Davoli, P., Gorla, C., Filippini, M., Bernasconi, A.: A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19, 219–235 (1997)CrossRefGoogle Scholar
  4. 4.
    Mamiya, E.N., Araújo, J.A.: Fatigue limit under multiaxial loadings: on the definition of the equivalent shear stress. Mech. Res. Commun. 29, 141–151 (2002)CrossRefGoogle Scholar
  5. 5.
    Braccesi, C., Cianetti, F., Lori, G., Pioli, D.: An equivalent uniaxial stress process for fatigue life estimation of mechanical components under multiaxial stress conditions. Int. J. Fatigue 30, 1479–1497 (2008)CrossRefGoogle Scholar
  6. 6.
    Liu, J., Zenner, H.: Berechnung der Dauerschwingfestigkeit bei mehrachsiger Beanspruchung - Teil 1. Materialwissenschaft und Werkstofftechnik 24, 240–249 (1993)CrossRefGoogle Scholar
  7. 7.
    Zenner, H., Simbürger, A., Liu, J.: On the fatigue limit of ductile metals under complex multiaxial loading. Int. J. Fatigue 22, 137–145 (2000)CrossRefGoogle Scholar
  8. 8.
    Papuga, J.: A survey on evaluating the fatigue limit under multiaxial loading. Int. J. Fatigue 33, 153–165 (2011)CrossRefGoogle Scholar
  9. 9.
    Sines, G.: Failure of materials under combined repeated stresses with superimposed static stresses. [Technical report NACA-TN-3495]. Washington, NACA (1955)Google Scholar
  10. 10.
    Papuga, J.: New technologies for sharing research data and costs. Procedia Eng. 2(1), 855–864 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Xiao, Q., Shi, X., Fei, B.: Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy. Int. J. Fatigue 67, 173–182 (2014)CrossRefGoogle Scholar
  12. 12.
    Pallarés Santasmartas, L., Merzeau, J., Albizuri, J., Avilés, R., Girot, F., Saintier, N.: The effect of mean shear stress on torsional fatigue strength of 34CrNiMo6 steel. In: Proceedings of International Conference on Multiaxial Fatigue & Fracture, Seville (2016)Google Scholar
  13. 13.
    Papuga, J., Ruzicka, M.: Two new multiaxial criteria for high cycle fatigue computation. Int. J. Fatigue 30, 58–66 (2008)CrossRefGoogle Scholar
  14. 14.
    Klubberg, F., Broeckmann, C., Beiss, P.: Festigkeitskennwerte und mehrachsige Schwingfestigkeit von lamellaren Gusseisen. Mater. Test. 54(9), 569–577 (2012)CrossRefGoogle Scholar
  15. 15.
    Papuga, J.: Mapping of Fatigue Damages—Program Shell of FE-Calculation. [PhD thesis]. Prague, CTU in Prague (2005)Google Scholar
  16. 16.
    Bernasconi, A.: Efficient algorithms for calculation of shear stress amplitude and amplitude of the second invariant of the stress deviator in fatigue criteria applications. Int. J. Fatigue 24, 649–657 (2002)CrossRefGoogle Scholar
  17. 17.
    Papuga, J.: Improvements of two criteria for multiaxial fatigue limit evaluation. Bull. Appl. Mech. 5, 80–86 (2009)Google Scholar
  18. 18.
    Spagnoli, A.: A new high-cycle fatigue criterion applied to out-of-phase biaxial stress state. Int. J. Mech. Sci. 43, 2581–2595 (2001)CrossRefGoogle Scholar
  19. 19.
    Ninic, D.: A stress-based multiaxial high-cycle fatigue damage criterion. Int. J. Fatigue 28, 103–113 (2006)CrossRefGoogle Scholar
  20. 20.
    Crossland, B.: Effect of large hydrostatic pressure on the torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals. London, Institution of Mechanical Engineers, pp. 138–149 (1956)Google Scholar
  21. 21.
    Dang Van, K.: Sur la résistance à la fatigue des métaux. Thèse de Doctorat ès Sciences, Sci. Techniq. L’Armement, 47, 647 (1973).Google Scholar
  22. 22.
    Heidenreich, R.: Schubspannungsintensitätshypothese - Dauerschwingfestigkeit bei mehrachsiger Beanspruchung, [Heft 105]. FKM, Frankfurt a.M. - Niederrad (1983)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringCzech Technical University in PraguePrague 6Czech Republic
  2. 2.IT4InnovationsVŠB – Technical University of OstravaOstravaCzech Republic
  3. 3.Faculty of Mechanical EngineeringVŠB – Technical University of OstravaOstravaCzech Republic

Personalised recommendations