Archive of Applied Mechanics

, Volume 88, Issue 11, pp 1945–1951 | Cite as

Interface instability of an inelastic normal collision

  • P. F. PelzEmail author
  • M. M. G. Kuhr


The interface of two normal colliding media is always unstable. This is true even for both media showing the same density. The common precondition for a Rayleigh–Taylor instability “the lighter medium pushes the heavier” is generalised for the case that two media experience different accelerations in a short period after colliding. The arithmetic average of the accelerations determines the evolution of the wavy interface shape. The theory is applicable for various technologies of impact welding, such as explosion and magnetic pulse welding.


Interface instability Rayleigh–Taylor instability Inelastic collision 



  1. 1.
    Ben-Artzy, A., Stern, A., Frage, N., Shribman, V., Sadot, O.: Wave formation mechanism in magnetic pulse welding. Int. J. Impact Eng. 37(4), 397–404 (2010). CrossRefGoogle Scholar
  2. 2.
    Carpenter, S., Wittman, R.: Explosion welding. Annu. Rev. Mater. Sci. 5(1), 177–199 (1975)CrossRefGoogle Scholar
  3. 3.
    Carton, E.: Wave forming mechanisms in explosive welding. In: Explosion, Shock Wave and Hypervelocity Phenomena in Materials, Materials Science Forum, vol. 465, pp. 219–224. Trans Tech Publications (2004). CrossRefGoogle Scholar
  4. 4.
    Cowan, G.R., Bergmann, O.R., Holtzman, A.H.: Mechanism of bond zone wave formation in explosion-clad metals. Metall. Mater. Trans. B 2(11), 3145–3155 (1971)CrossRefGoogle Scholar
  5. 5.
    Godunov, S., Deribas, A., Zabrodin, A., Kozin, N.: Hydrodynamic effects in colliding solids. J. Comput. Phys. 5(3), 517–539 (1970). CrossRefGoogle Scholar
  6. 6.
    Groche, P., Wagner, M.X., Pabst, C., Sharafiev, S.: Development of a novel test rig to investigate the fundamentals of impact welding. J. Mater. Process. Technol. 214(10), 2009–2017 (2014). CrossRefGoogle Scholar
  7. 7.
    Hohenemser, K., Prager, W.: Fundamental equations and definitions concerning the mechanics of isotropic continual. J. Rheol. 3(1), 16–22 (1932). CrossRefzbMATHGoogle Scholar
  8. 8.
    Lee, K.J., Kumai, S., Arai, T., Aizawa, T.: Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding. Mater. Sci. Eng. A 471(1–2), 95–101 (2007). CrossRefGoogle Scholar
  9. 9.
    Newman, J.N.: Marine Hydrodynamics. MIT Press, Cambridge (1977)Google Scholar
  10. 10.
    Piriz, A., J.L, C., O, C., N, T., D, H.: Rayleigh–Taylor instability in elastic solids. Phys. Rev. E 72(5), 056–313 (2005)CrossRefGoogle Scholar
  11. 11.
    Piriz, A., Cela, J.L., Tahir, N.: Linear analysis of incompressible Rayleigh–Taylor instability in solids. Phys. Rev. E 80(4), 046–305 (2009)CrossRefGoogle Scholar
  12. 12.
    Piriz, A.R., Sun, Y.B., Tahir, N.A.: Rayleigh–Taylor instability in accelerated solid media. Eur. J. Phys. 38(1), 015–003 (2017). CrossRefGoogle Scholar
  13. 13.
    Reid, S.: A discussion of the mechanism of interface wave generation in explosive welding. Int. J. Mech. Sci. 16(6), 399–413 (1974). CrossRefGoogle Scholar
  14. 14.
    Reid, S.R., Langdale, D.J.: Investigation of the modulation of interface waves in explosive welding. In: Tobias, S.A., Koenigsberger, F. (eds.) Proceedings of the Fifteenth International Machine Tool Design and Research Conference, pp. 391–398. Macmillan Education, London (1975).
  15. 15.
    Weddeling, C.: Electromagnetic form-fit joining. Ph.D. thesis, Technische Universität Dortmund (2015)Google Scholar
  16. 16.
    Zhang, Y., Babu, S.S., Prothe, C., Blakely, M., Kwasegroch, J., LaHa, M., Daehn, G.S.: Application of high velocity impact welding at varied different length scales. J. Mater. Process. Technol. 211(5), 944–952 (2011). (Special issue: Impulse forming)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Fluid SystemsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations