Advertisement

Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links

  • Andreas M. Menzel
Original
  • 97 Downloads

Abstract

Magnetic hybrid materials in the form of magnetic gels and elastomers, that is, magnetic or magnetizable colloidal particles embedded in an elastic polymer matrix, are fascinating substances. By addressing and adjusting the magnetic interactions between the particles through external magnetic fields, their overall material properties can be tuned reversibly while in operation. A central goal is to understand how these features can be optimized and which structural properties of the materials determine their overall behavior and its tunability. Mesoscopic theories and modeling are necessary for these purposes, resolving the arrangement of the embedded particles and linking it to the macroscopic scale of the overall material behavior. Here, we overview such recent developments of mesoscopic approaches. Particularly, we address coarse-grained but efficient dipole-spring models, explicit analytical calculations using linear elasticity theory, numerical approaches that allow to characterize nonlinear effects, or density functional theory. In this way, various properties and types of behavior of these materials are revealed, for instance, their reversible tunability of static and dynamic mechanical moduli by magnetic fields, elastic interactions between the embedded particles mediated through the polymeric matrix, or a pronounced and reversibly tunable nonlinear stress–strain behavior. Links from the mesoscopic to the micro- and macroscopic level are outlined. We mention combined efforts of theoretical descriptions, modeling, numerical simulations, and experimental investigations. It becomes evident from our treatment that an integrated approach of theory, simulations, and experiments will significantly increase our further understanding of these materials in the future and will draw possible applications into sight.

Keywords

Ferrogels Magnetorheological elastomers Mesoscopic modeling Particle–matrix interactions Tunable elastic properties Scale bridging 

Notes

Acknowledgements

The author thanks several colleagues for fruitful collaborations that led to the different studies and effects overviewed above, namely, Hartmut Löwen, Peet Cremer, Giorgio Pessot, Mate Puljiz, Elshad Allahyarov, Sonja Babel, Mitsusuke Tarama, Rudolf Weeber, Christian Holm, Karl Kalina, Markus Kästner, Michael Orlishausen, Werner Köhler, Shilin Huang, Günter K. Auernhammer, Malte Schümann, Thomas Gundermann, Dmitry Borin, and Stefan Odenbach. The present work was supported through the Deutsche Forschungsgemeinschaft (DFG) via the SPP 1681, Grant No. ME 3571/3.

Note Doi information below links to references containing previously published figure material that is reproduced in the present article.

References

  1. 1.
    Allahyarov, E., Löwen, H., Zhu, L.: A simulation study of the electrostriction effects in dielectric elastomer composites containing polarizable inclusions with different spatial distributions. Phys. Chem. Chem. Phys. 17(48), 32479–32497 (2015)Google Scholar
  2. 2.
    Allahyarov, E., Löwen, H., Zhu, L.: Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-\(k\) inclusions. Phys. Chem. Chem. Phys. 18(28), 19103–19117 (2016)Google Scholar
  3. 3.
    Allahyarov, E., Menzel, A.M., Zhu, L., Löwen, H.: Magnetomechanical response of bilayered magnetic elastomers. Smart Mater. Struct. 23(11), 115004 (2014)Google Scholar
  4. 4.
    Annunziata, M.A., Menzel, A.M., Löwen, H.: Hardening transition in a one-dimensional model for ferrogels. J. Chem. Phys. 138(20), 204906 (2013)Google Scholar
  5. 5.
    Attaran, A., Brummund, J., Wallmersperger, T.: Modeling and finite element simulation of the magneto-mechanical behavior of ferrogels. J. Magn. Magn. Mater. 431, 188–191 (2017)Google Scholar
  6. 6.
    Babel, S., Löwen, H., Menzel, A.M.: Dynamics of a linear magnetic “microswimmer molecule”. EPL (Europhys. Lett.) 113(5), 58003 (2016).  https://doi.org/10.1209/0295-5075/113/58003 CrossRefGoogle Scholar
  7. 7.
    Baraban, L., Makarov, D., Streubel, R., Mönch, I., Grimm, D., Sanchez, S., Schmidt, O.G.: Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012)Google Scholar
  8. 8.
    Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G., Volpe, G.: Active particles in complex and crowded environments. Rev. Mod. Phys. 88(4), 045006 (2016)MathSciNetGoogle Scholar
  9. 9.
    Bender, P., Günther, A., Tschöpe, A., Birringer, R.: Synthesis and characterization of uniaxial ferrogels with Ni nanorods as magnetic phase. J. Magn. Magn. Mater. 323(15), 2055–2063 (2011)Google Scholar
  10. 10.
    Biller, A.M., Stolbov, O.V., Raikher, Y.L.: Modeling of particle interactions in magnetorheological elastomers. J. Appl. Phys. 116(11), 114904 (2014)Google Scholar
  11. 11.
    Biller, A.M., Stolbov, O.V., Raikher, Y.L.: Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer. Phys. Rev. E 92(2), 023202 (2015)Google Scholar
  12. 12.
    Bohlius, S., Brand, H.R., Pleiner, H.: Macroscopic dynamics of uniaxial magnetic gels. Phys. Rev. E 70(6), 061411 (2004)Google Scholar
  13. 13.
    Böse, H., Röder, R.: Magnetorheological elastomers with high variability of their mechanical properties. J. Phys. Conf. Ser. 149(1), 012090 (2009)Google Scholar
  14. 14.
    Brand, H.R., Pleiner, H.: Electrohydrodynamics of nematic liquid crystalline elastomers. Phys. A 208(3–4), 359–372 (1994)Google Scholar
  15. 15.
    Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E., Weitz, D.A.: Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173(5), 733–741 (2006)Google Scholar
  16. 16.
    Broedersz, C.P., MacKintosh, F.C.: Modeling semiflexible polymer networks. Rev. Mod. Phys. 86(3), 995 (2014)Google Scholar
  17. 17.
    Buttinoni, I., Volpe, G., Kümmel, F., Volpe, G., Bechinger, C.: Active Brownian motion tunable by light. J. Phys.: Condens. Matter 24(28), 284129 (2012)Google Scholar
  18. 18.
    Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, New York (2000)Google Scholar
  19. 19.
    Collin, D., Auernhammer, G.K., Gavat, O., Martinoty, P., Brand, H.R.: Frozen-in magnetic order in uniaxial magnetic gels: preparation and physical properties. Macromol. Rapid Commun. 24(12), 737–741 (2003)Google Scholar
  20. 20.
    Cremer, P., Heinen, M., Menzel, A.M., Löwen, H.: A density functional approach to ferrogels. J. Phys.: Condens. Matter 29(27), 275102 (2017).  https://doi.org/10.1088/1361-648X/aa73bd CrossRefGoogle Scholar
  21. 21.
    Cremer, P., Löwen, H., Menzel, A.M.: Tailoring superelasticity of soft magnetic materials. Appl. Phys. Lett. 107(17), 171903 (2015).  https://doi.org/10.1063/1.4934698 CrossRefGoogle Scholar
  22. 22.
    Cremer, P., Löwen, H., Menzel, A.M.: Superelastic stress–strain behavior in ferrogels with different types of magneto–elastic coupling. Phys. Chem. Chem. Phys. 18(38), 26670–26690 (2016).  https://doi.org/10.1039/C6CP05079D CrossRefGoogle Scholar
  23. 23.
    Delaunay, B.N.: Sur la sphère vide. Bull. Acad. Sci. USSR 6, 793–800 (1934)zbMATHGoogle Scholar
  24. 24.
    Dhont, J.K.G.: An Introduction to Dynamics of Colloids. Elsevier, Amsterdam (1996)Google Scholar
  25. 25.
    Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (2007)Google Scholar
  26. 26.
    Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437(7060), 862–865 (2005)zbMATHGoogle Scholar
  27. 27.
    Elgeti, J., Winkler, R.G., Gompper, G.: Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78(5), 056601 (2015)MathSciNetGoogle Scholar
  28. 28.
    Evans, B.A., Fiser, B.L., Prins, W.J., Rapp, D.J., Shields, A.R., Glass, D.R., Superfine, R.: A highly tunable silicone-based magnetic elastomer with nanoscale homogeneity. J. Magn. Magn. Mater. 324(4), 501–507 (2012)Google Scholar
  29. 29.
    Evans, R.: Density functional theory for inhomogeneous fluids I: simple fluids in equilibrium. In: Cichocki, B., Napiórkowski, M., Piasecki, J. (eds.) Lecture Notes 3rd Warsaw School of Statistical Physics, pp. 43–85. Warsaw University Press, Warsaw (2010)Google Scholar
  30. 30.
    Filipcsei, G., Csetneki, I., Szilágyi, A., Zrínyi, M.: Magnetic field-responsive smart polymer composites. Adv. Polym. Sci. 206, 137–189 (2007)Google Scholar
  31. 31.
    Fujita, T., Jeyadevan, B., Yamaguchi, K., Nishiyama, H.: Preparation, viscosity and damping of functional fluids that respond to both magnetic and electric fields. Powder Technol. 101(3), 279–287 (1999)Google Scholar
  32. 32.
    de Gennes, P.G.: Weak nematic gels. In: Helfrich, W., Heppke, G. (eds.) Liquid Crystals of One- and Two-Dimensional Order, pp. 231–237. Springer, Berlin (1980)Google Scholar
  33. 33.
    Goh, S., Menzel, A.M., Löwen, H.: Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation. Phys. Chem. Chem. Phys. 20(22), 15037–15051 (2018)Google Scholar
  34. 34.
    Gundermann, T., Cremer, P., Löwen, H., Menzel, A.M., Odenbach, S.: Statistical analysis of magnetically soft particles in magnetorheological elastomers. Smart Mater. Struct. 26(4), 045012 (2017).  https://doi.org/10.1088/1361-665X/aa5f96 CrossRefGoogle Scholar
  35. 35.
    Günther, D., Borin, D.Y., Günther, S., Odenbach, S.: X-ray micro-tomographic characterization of field-structured magnetorheological elastomers. Smart Mater. Struct. 21(1), 015005 (2011)Google Scholar
  36. 36.
    Han, Y., Hong, W., Faidley, L.E.: Field-stiffening effect of magneto-rheological elastomers. Int. J. Solids Struct. 50(14), 2281–2288 (2013)Google Scholar
  37. 37.
    Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Elsevier, Amsterdam (1990)zbMATHGoogle Scholar
  38. 38.
    Harmandaris, V.A., Reith, D., van der Vegt, N.F.A., Kremer, K.: Comparison between coarse-graining models for polymer systems: two mapping schemes for polystyrene. Macromol. Chem. Phys. 208(19–20), 2109–2120 (2007)Google Scholar
  39. 39.
    Howse, J.R., Jones, R.A.L., Ryan, A.J., Gough, T., Vafabakhsh, R., Golestanian, R.: Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99(4), 048102 (2007)Google Scholar
  40. 40.
    Huang, S., Pessot, G., Cremer, P., Weeber, R., Holm, C., Nowak, J., Odenbach, S., Menzel, A.M., Auernhammer, G.K.: Buckling of paramagnetic chains in soft gels. Soft Matter 12(1), 228–237 (2016)Google Scholar
  41. 41.
    Ilg, P.: Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 9(13), 3465–3468 (2013)Google Scholar
  42. 42.
    Ilg, P., Kröger, M., Hess, S.: Anisotropy of the magnetoviscous effect in ferrofluids. Phys. Rev. E 71(5), 051201 (2005)Google Scholar
  43. 43.
    Ivaneyko, D., Toshchevikov, V., Saphiannikova, M., Heinrich, G.: Effects of particle distribution on mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field. Condens. Matter Phys. 15(3), 33601 (2012)Google Scholar
  44. 44.
    Ivaneyko, D., Toshchevikov, V.P., Saphiannikova, M., Heinrich, G.: Magneto-sensitive elastomers in a homogeneous magnetic field: a regular rectangular lattice model. Macromol. Theor. Simul. 20(6), 411–424 (2011)Google Scholar
  45. 45.
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)zbMATHGoogle Scholar
  46. 46.
    Jarkova, E., Pleiner, H., Müller, H.W., Brand, H.R.: Hydrodynamics of isotropic ferrogels. Phys. Rev. E 68(4), 041706 (2003)Google Scholar
  47. 47.
    Jiang, H.R., Yoshinaga, N., Sano, M.: Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105(26), 268302 (2010)Google Scholar
  48. 48.
    Jolly, M.R., Carlson, J.D., Muñoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intel. Mater. Syst. Struct. 7(6), 613–622 (1996)Google Scholar
  49. 49.
    Jordan, A., Scholz, R., Wust, P., Fähling, H., Felix, R.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201(1), 413–419 (1999)Google Scholar
  50. 50.
    Kaiser, A., Winkler, M., Krause, S., Finkelmann, H., Schmidt, A.M.: Magnetoactive liquid crystal elastomer nanocomposites. J. Mater. Chem. 19(4), 538–543 (2009)Google Scholar
  51. 51.
    Kalina, K.A., Brummund, J., Metsch, P., Kästner, M., Borin, D.Y., Linke, J.M., Odenbach, S.: Modeling of magnetic hystereses in soft MREs filled with NdFeB particles. Smart Mater. Struct. 26(10), 105019 (2017)Google Scholar
  52. 52.
    Kim, S., Phan-Thien, N.: Faxén relations and some rigid inclusion problems. J. Elasticity 37(2), 93–111 (1995)zbMATHGoogle Scholar
  53. 53.
    Klapp, S.H.L.: Dipolar fluids under external perturbations. J. Phys.: Condens. Matter 17(15), R525–R550 (2005)Google Scholar
  54. 54.
    Klapp, S.H.L.: Collective dynamics of dipolar and multipolar colloids: from passive to active systems. Curr. Opin. Colloid Interface Sci. 21, 76–85 (2016)Google Scholar
  55. 55.
    Klumpp, S., Faivre, D.: Magnetotactic bacteria. Eur. Phys. J. Spec. Top. 225(11–12), 2173–2188 (2016)Google Scholar
  56. 56.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, Berlin (1991)zbMATHGoogle Scholar
  57. 57.
    Küpfer, J., Finkelmann, H.: Nematic liquid single crystal elastomers. Macromol. Rapid Commun. 12(12), 717–726 (1991)Google Scholar
  58. 58.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Elsevier, Oxford (1986)zbMATHGoogle Scholar
  59. 59.
    Liao, G.J., Gong, X.L., Xuan, S.H., Kang, C.J., Zong, L.H.: Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Int. Mater. Syst. Struct. 23(1), 25–33 (2012)Google Scholar
  60. 60.
    Lopez-Lopez, M.T., Durán, J.D.G., Iskakova, L.Y., Zubarev, A.Y.: Mechanics of magnetopolymer composites: a review. J. Nanofluids 5(4), 479–495 (2016)Google Scholar
  61. 61.
    Löwen, H.: Density functional theory for inhomogeneous fluids II: statics, dynamics, and applications. In: Cichocki, B., Napiórkowski, M., Piasecki, J. (eds.) Lecture Notes 3rd Warsaw School of Statistical Physics, pp. 87–121. Warsaw University Press, Warsaw (2010)Google Scholar
  62. 62.
    McTague, J.P.: Magnetoviscosity of magnetic colloids. J. Chem. Phys. 51(1), 133–136 (1969)Google Scholar
  63. 63.
    Menzel, A.M.: Bridging from particle to macroscopic scales in uniaxial magnetic gels. J. Chem. Phys. 141(19), 194907 (2014).  https://doi.org/10.1063/1.4901275 CrossRefGoogle Scholar
  64. 64.
    Menzel, A.M.: Tuned, driven, and active soft matter. Phys. Rep. 554, 1–45 (2015)MathSciNetGoogle Scholar
  65. 65.
    Menzel, A.M.: Velocity and displacement statistics in a stochastic model of nonlinear friction showing bounded particle speed. Phys. Rev. E 92(5), 052302 (2015)Google Scholar
  66. 66.
    Menzel, A.M.: Hydrodynamic description of elastic or viscoelastic composite materials: relative strains as macroscopic variables. Phys. Rev. E 94(2), 023003 (2016)Google Scholar
  67. 67.
    Menzel, A.M.: Force-induced elastic matrix-mediated interactions in the presence of a rigid wall. Soft Matter 13(18), 3373–3384 (2017).  https://doi.org/10.1039/C7SM00459A CrossRefGoogle Scholar
  68. 68.
    Menzel, A.M., Brand, H.R.: Cholesteric elastomers in external mechanical and electric fields. Phys. Rev. E 75(1), 011707 (2007)Google Scholar
  69. 69.
    Menzel, A.M., Brand, H.R.: Instabilities in nematic elastomers in external electric and magnetic fields. Eur. Phys. J. E 26(3), 235–249 (2008)Google Scholar
  70. 70.
    Menzel, A.M., Pleiner, H., Brand, H.R.: On the nonlinear stress–strain behavior of nematic elastomers–materials of two coupled preferred directions. J. Appl. Phys. 105(1), 013503 (2009)Google Scholar
  71. 71.
    Menzel, A.M., Pleiner, H., Brand, H.R.: Response of prestretched nematic elastomers to external fields. Eur. Phys. J. E 30(4), 371–377 (2009)Google Scholar
  72. 72.
    Messing, R., Frickel, N., Belkoura, L., Strey, R., Rahn, H., Odenbach, S., Schmidt, A.M.: Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels. Macromolecules 44(8), 2990–2999 (2011)Google Scholar
  73. 73.
    Metsch, P., Kalina, K.A., Spieler, C., Kästner, M.: A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput. Mater. Sci. 124, 364–374 (2016)Google Scholar
  74. 74.
    Min, T.L., Mears, P.J., Chubiz, L.M., Rao, C.V., Golding, I., Chemla, Y.R.: High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat. Methods 6(11), 831–835 (2009)Google Scholar
  75. 75.
    Molchanov, V.S., Stepanov, G.V., Vasiliev, V.G., Kramarenko, E.Y., Khokhlov, A.R., Xu, Z.D., Guo, Y.Q.: Viscoelastic properties of magnetorheological elastomers for damping applications. Macromol. Mater. Eng. 299(9), 1116–1125 (2014)Google Scholar
  76. 76.
    Navier, C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mém. Acad. Sci. Inst. France 6, 389–440 (1822)Google Scholar
  77. 77.
    Norris, A.N.: Faxén relations in solids—a generalized approach to particle motion in elasticity and viscoelasticity. J. Acoust. Soc. Am. 123(1), 99–108 (2008)Google Scholar
  78. 78.
    Odenbach, S.: Recent progress in magnetic fluid research. J. Phys.: Condens. Matter 16(32), R1135–R1150 (2004)Google Scholar
  79. 79.
    Odenbach, S.: Microstructure and rheology of magnetic hybrid materials. Arch. Appl. Mech. 86(1–2), 269–279 (2016)Google Scholar
  80. 80.
    Pessot, G., Cremer, P., Borin, D.Y., Odenbach, S., Löwen, H., Menzel, A.M.: Structural control of elastic moduli in ferrogels and the importance of non-affine deformations. J. Chem. Phys. 141(12), 015005 (2014).  https://doi.org/10.1063/1.4896147 CrossRefGoogle Scholar
  81. 81.
    Pessot, G., Löwen, H., Menzel, A.M.: Dynamic elastic moduli in magnetic gels: normal modes and linear response. J. Chem. Phys. 145(10), 104904 (2016).  https://doi.org/10.1063/1.4962365 CrossRefGoogle Scholar
  82. 82.
    Pessot, G., Schümann, M., Gundermann, T., Odenbach, S., Löwen, H., Menzel, A.M.: Tunable dynamic moduli of magnetic elastomers: from characterization by x-ray micro-computed tomography to mesoscopic modeling. J. Phys.: Condens. Matter 30(12), 125101 (2018).  https://doi.org/10.1088/1361-648X/aaaeaa CrossRefGoogle Scholar
  83. 83.
    Pessot, G., Weeber, R., Holm, C., Löwen, H., Menzel, A.M.: Towards a scale-bridging description of ferrogels and magnetic elastomers. J. Phys.: Condens. Matter 27(32), 325105 (2015).  https://doi.org/10.1088/0953-8984/27/32/325105 CrossRefGoogle Scholar
  84. 84.
    Phan-Thien, N.: On the image system for the Kelvin-state. J. Elasticity 13(2), 231–235 (1983)zbMATHGoogle Scholar
  85. 85.
    Phan-Thien, N.: Rigid spherical inclusion: the multipole expansion. J. Elasticity 32(3), 243–252 (1993)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Phan-Thien, N., Kim, S.: The load transfer between two rigid spherical inclusions in an elastic medium. ZAMP 45(2), 177–201 (1994)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Pleiner, H., Harden, J.L.: General nonlinear 2-fluid hydrodynamics of complex fluids and soft matter. ArXiv preprint arXiv:cond-mat/0404134 (2004)
  88. 88.
    Polin, M., Tuval, I., Drescher, K., Gollub, J.P., Goldstein, R.E.: Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 325(5939), 487–490 (2009)Google Scholar
  89. 89.
    Puljiz, M., Huang, S., Auernhammer, G.K., Menzel, A.M.: Forces on rigid inclusions in elastic media and resulting matrix-mediated interactions. Phys. Rev. Lett. 117(23), 238003 (2016).  https://doi.org/10.1103/PhysRevLett.117.238003 CrossRefGoogle Scholar
  90. 90.
    Puljiz, M., Huang, S., Kalina, K.A., Nowak, J., Odenbach, S., Kästner, M., Auernhammer, G.K., Menzel, A.M. (submitted)Google Scholar
  91. 91.
    Puljiz, M., Menzel, A.M.: Forces and torques on rigid inclusions in an elastic environment: resulting matrix-mediated interactions, displacements, and rotations. Phys. Rev. E 95(5), 053002 (2017)Google Scholar
  92. 92.
    Puljiz, M., Orlishausen, M., Köhler, W., Menzel, A.M.: Thermophoretically induced large-scale deformations around microscopic heat centers. J. Chem. Phys. 144(18), 184903 (2016).  https://doi.org/10.1063/1.4948729 CrossRefGoogle Scholar
  93. 93.
    Roeder, L., Bender, P., Kundt, M., Tschöpe, A., Schmidt, A.M.: Magnetic and geometric anisotropy in particle-crosslinked ferrohydrogels. Phys. Chem. Chem. Phys. 17(2), 1290–1298 (2015)Google Scholar
  94. 94.
    Schmauch, M.M., Mishra, S.R., Evans, B.A., Velev, O.D., Tracy, J.B.: Chained iron microparticles for directionally controlled actuation of soft robots. ACS Appl. Mater. Interfaces 9(13), 11895–11901 (2017)Google Scholar
  95. 95.
    Schümann, M., Odenbach, S.: In-situ observation of the particle microstructure of magnetorheological elastomers in presence of mechanical strain and magnetic fields. J. Magn. Magn. Mater. 441, 88–92 (2017)Google Scholar
  96. 96.
    Schwaiger, F., Köhler, W.: Photothermal deformation of a transient polymer network. Macromolecules 46(4), 1673–1677 (2013)Google Scholar
  97. 97.
    Singh, Y.: Density-functional theory of freezing and properties of the ordered phase. Phys. Rep. 207(6), 351–444 (1991)Google Scholar
  98. 98.
    Sorokin, V.V., Stepanov, G.V., Shamonin, M., Monkman, G.J., Khokhlov, A.R., Kramarenko, E.Y.: Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: effects of filler composition, strain amplitude and magnetic field. Polymer 76, 191–202 (2015)Google Scholar
  99. 99.
    Stolbov, O.V., Raikher, Y.L., Balasoiu, M.: Modelling of magnetodipolar striction in soft magnetic elastomers. Soft Matter 7(18), 8484–8487 (2011)Google Scholar
  100. 100.
    Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A 240(826), 599–642 (1948)zbMATHGoogle Scholar
  101. 101.
    Strobl, G.: The Physics of Polymers. Springer, Berlin (2007)Google Scholar
  102. 102.
    Tarama, M., Cremer, P., Borin, D.Y., Odenbach, S., Löwen, H., Menzel, A.M.: Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields. Phys. Rev. E 90(4), 042311 (2014)Google Scholar
  103. 103.
    Teodosiu, C.: The Elastic Field of Point Defects. Springer, Berlin (1982)Google Scholar
  104. 104.
    Tietze, R., Lyer, S., Dürr, S., Struffert, T., Engelhorn, T., Schwarz, M., Eckert, E., Göen, T., Vasylyev, S., Peukert, W., Wiekhorst, F., Trahms, L., Dörfler, A., Alexiou, C.: Efficient drug-delivery using magnetic nanoparticles—biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine 9(7), 961–971 (2013)Google Scholar
  105. 105.
    Treloar, L.R.G.: The elasticity of a network of long-chain molecules-II. Trans. Faraday Soc. 39, 241–246 (1943)Google Scholar
  106. 106.
    Urayama, K., Mashita, R., Kobayashi, I., Takigawa, T.: Stretching-induced director rotation in thin films of liquid crystal elastomers with homeotropic alignment. Macromolecules 40(21), 7665–7670 (2007)Google Scholar
  107. 107.
    Varga, Z., Fehér, J., Filipcsei, G., Zrínyi, M.: Smart nanocomposite polymer gels. Macromol. Symp. 200(1), 93–100 (2003)Google Scholar
  108. 108.
    Volkova, T.I., Böhm, V., Kaufhold, T., Popp, J., Becker, F., Borin, D.Y., Stepanov, G.V., Zimmermann, K.: Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic field for sensor applications. J. Magn. Magn. Mater. 431, 262–265 (2017)Google Scholar
  109. 109.
    Warner Jr., H.R.: Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam. 11(3), 379–387 (1972)Google Scholar
  110. 110.
    Weeber, R., Hermes, M., Schmidt, A.M., Holm, C.: Polymer architecture of magnetic gels: a review. J. Phys.: Condens. Matter 30(6), 063002 (2018)Google Scholar
  111. 111.
    Weeber, R., Holm, C.: Interplay between particle microstructure, network topology and sample shape in magnetic gels—a molecular dynamics simulation study. ArXiv preprint arXiv:1704.06578 (2017)
  112. 112.
    Weeber, R., Kantorovich, S., Holm, C.: Ferrogels cross-linked by magnetic nanoparticles—deformation mechanisms in two and three dimensions studied by means of computer simulations. J. Magn. Magn. Mater. 383, 262–266 (2015)Google Scholar
  113. 113.
    Wiegand, S.: Thermal diffusion in liquid mixtures and polymer solutions. J. Phys.: Condens. Matter 16(10), R357–R379 (2004)Google Scholar
  114. 114.
    Wood, D.S., Camp, P.J.: Modeling the properties of ferrogels in uniform magnetic fields. Phys. Rev. E 83(1), 011402 (2011)Google Scholar
  115. 115.
    Yoshinaga, N., Nagai, K.H., Sumino, Y., Kitahata, H.: Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow. Phys. Rev. E 86(1), 016108 (2012)Google Scholar
  116. 116.
    Zrínyi, M., Barsi, L., Büki, A.: Deformation of ferrogels induced by nonuniform magnetic fields. J. Chem. Phys. 104(21), 8750–8756 (1996)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations