Archive of Applied Mechanics

, Volume 89, Issue 3, pp 409–424

# Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium

• Evgeniya V. Goloveshkina
• Leonid M. Zubov
Special

## Abstract

The equilibrium problem of a nonlinearly elastic medium with a given dislocation distribution is considered. The system of equations consists of the equilibrium equations for the stresses, the incompatibility equations for the distortion tensor, and the constitutive equations. Deformations are considered to be finite. For a special distribution of screw and edge dislocations, an exact spherically symmetric solution of these equations is found. This solution is universal in the class of isotropic incompressible elastic bodies. With the help of the obtained solution, the eigenstresses in a solid elastic sphere and in an infinite space with a spherical cavity are determined. The interaction of dislocations with an external hydrostatic load was also investigated. We have found the dislocation distribution that causes the spherically symmetric quasi-solid state of an elastic body, which is characterized by zero stresses and a nonuniform elementary volumes rotation field.

## Keywords

Nonlinear elasticity Dislocation density Eigenstresses Large deformations Exact solution Quasi-solid states

## References

1. 1.
Berdichevsky, V.L., Sedov, L.I.: Dynamic theory of continuously distributed dislocations. its relation to plasticity theory. Prikl. Mat. Mekh. 31(6), 989–1006 (1967)Google Scholar
2. 2.
Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. A231, 263–273 (1955)
3. 3.
Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)
4. 4.
Clayton, J.D., McDowell, D.L., Bammann, D.J.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22(2), 210–256 (2006)
5. 5.
Derezin, S.V., Zubov, L.M.: Disclinations in nonlinear elasticity. Ztsch. Angew. Math. und Mech. 91, 433–442 (2011)
6. 6.
Dorfmann, A., Ogden, R.W., Saccomandi, G.: Universal relations for non-linear magnetoelastic solids. Int. J. Non-Linear Mech. 39(10), 1699–1708 (2004)
7. 7.
Eremeyev, V., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)
8. 8.
Ericksen, J.L.: Deformations possible in every isotropic, incompressible, perfectly elastic body. Z. Angew. Math. Physik ZAMP 5(6), 466–489 (1954)
9. 9.
Eshelby, J.D.: The continuum theory of lattice defects. In: Seitz, D.T.F. (ed.) Solid State Physics, vol. 3, pp. 79–144. Academic, New York (1956)Google Scholar
10. 10.
Gutkin, M.Y., Ovid’ko, I.A.: Plastic Deformation in Nanocrystalline Materials. Springer, Berlin (2004)Google Scholar
11. 11.
Klingbeil, W.W., Shield, R.T.: On a class of solutions in plane finite elasticity. Z. Angew. Math. Physik ZAMP 17(4), 489–511 (1966)Google Scholar
12. 12.
Kondo, K.: On the geometrical and physical foundations in the theory of yielding. In: Proceedings of 2nd Japan National Congress for Applied Mechanics, Tokyo, pp. 41–47 (1952)Google Scholar
13. 13.
Koster, M., Le, K., Nguyen, B.: Formation of grain boundaries in ductile single crystals at finite plastic deformations. Int. J. Plast. 69, 134–151 (2015)Google Scholar
14. 14.
Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)
15. 15.
Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, Theoretical Physics, vol. 7. Pergamon, Oxford (1975)Google Scholar
16. 16.
Le, K., Stumpf, H.: A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast. 12(5), 611–627 (1996)
17. 17.
Le, K.C., Günther, C.: Nonlinear continuum dislocation theory revisited. Int. J. Plast. 53, 164–178 (2014)Google Scholar
18. 18.
Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)
19. 19.
Lurie, K.A.: The problem of effective parameters of a mixture of two isotropic dielectrics distributed in space-time and the conservation law for wave impedance in one-dimensional wave propagation. Proc. R. Soc. A Math. Phys. Eng. Sci. A454, 1767–1779 (1998)
20. 20.
Lurie, K.A.: An introduction to the mathematical theory of dynamic materials. In: Gao, D.Y., Ogden, R.W. (eds.) Advances in Mechanics and Mathematics, vol. 15. Springer, New York (2007)Google Scholar
21. 21.
Maugin, G.A.: Defects, dislocations and the general theory of material inhomogeneity. In: Sansour, C., Skatulla, S. (eds.) Generalized Continua and Dislocation Theory. CISM courses and lectures, vol. 537, pp. 1–83. Springer, Vienna (2012)Google Scholar
22. 22.
Maugin, G.A.: Continuum Mechanics Through the Twentieth Century. Springer, Heidelberg (2013)
23. 23.
Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)Google Scholar
24. 24.
Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)Google Scholar
25. 25.
Pucci, E., Saccomandi, G.: Universal motions for constrained simple materials. Int. J. Non Linear Mech. 34(3), 469–484 (1998)
26. 26.
Rivlin, R.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 241(835), 379–397 (1948)
27. 27.
Rivlin, R.: Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 195(1043), 463–473 (1949)
28. 28.
Rivlin, R.: Large elastic deformations of isotropic materials VI Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 242(845), 173–195 (1949)
29. 29.
Saccomandi, G.: Universal results in finite elasticity. Non-linear elasticity: theory and applications. Lond. Math. Soc. Lecture Note Ser. 283, 97–134 (2001)
30. 30.
Saccomandi, G., Beatty, M.F.: Universal relations for fiber-reinforced elastic materials. Math. Mech. Solids 7(1), 95–110 (2002)
31. 31.
Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic, New York (1977)
32. 32.
Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. 3, pp. 1–602. Springer, Berlin (1965)Google Scholar
33. 33.
Yavary, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205, 59–118 (2012)
34. 34.
Zelenina, A.A., Zubov, L.M.: Bending and twisting of nonlinear elastic bodies with continuously distributed dislocations. Vestn. Yuzhn. Nauchn. Tsentr. RAN 3(4), 15–22 (2009)Google Scholar
35. 35.
Zelenina, A.A., Zubov, L.M.: Nonlinear effects during the tension, bend, and torsion of elastic bodies with distributed dislocations. Dokl. Phys. 58(8), 354–357 (2013)Google Scholar
36. 36.
Zelenina, A.A., Zubov, L.M.: Quasi-solid states of micropolar elastic bodies. Dokl. Phys. 62(1), 30–33 (2017)Google Scholar
37. 37.
Zhbanova, E.V., Zubov, L.M.: The influence of distributed dislocations on large deformations of an elastic sphere. In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, Advanced Structured Materials, vol. 60, pp. 61–76. Springer, Singapore (2016)Google Scholar
38. 38.
Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)
39. 39.
Zubov, L.M.: Spherically symmetric solutions in the nonlinear theory of dislocations. Dokl. Phys. 59(9), 419–422 (2014)Google Scholar
40. 40.
Zubov, L.M.: Universal deformations of micropolar isotropic elastic solids. Math. Mech. Solids 21(2), 152–167 (2016)
41. 41.
Zubov, L.M., Rudev, A.N.: Unconditional explicit formula for the roots of third and fourth degree algebraic equations. Izv. Vuzov. Sev.-Kavk. Region. Yestestv. Nauki (Special Issue), Nonlinear Problems of the Mechanics of Continuous Media, pp. 223–226 (2003)Google Scholar