Advertisement

Archive of Applied Mechanics

, Volume 88, Issue 10, pp 1725–1742 | Cite as

Discrete and continuous aspects of some metamaterial elastic structures with band gaps

  • Mohammed Galal El Sherbiny
  • Luca Placidi
Original

Abstract

We study three different 1D continuous models (extensional rods, Euler and Timoshenko beams) for addressing the dynamic properties of those microstructural materials containing a density of resonators. These models correspond to metamaterials which show interesting properties: In particular, the property that is the objective of this paper is the capacity of eliminating the vibration amplitude in a specific frequency range, which is called hereinafter band gap. The simplicity of these models emphasizes those microstructural properties having a relation with the band gap. We show that the rigidity of the hosting structure does not affect the values of the frequency band gap; it affects only the distance between the load-source of vibration and those points where the amplitude attenuation is visible. We also study, from a numerical point of view and using the Euler beam as the hosting structure, the case of a finite number of resonators. In particular, we study the minimum number of resonators which provides the same band gap as in the case of the presence of a density of resonators. We finally perform a numerical study on a periodic 2D elastic structure, which behaves like the Timoshenko beam model and for which an identification procedure is given.

Keywords

Band gap Metamaterials Plane waves Dispersion relation Microstructure Identification Vibration Elasticity 

Notes

Acknowledgements

Erasmus projects: visit of Luca Placidi to Toulon and fellowship of Mohammed Galal El Sherbiny. This work was supported by a grant from the Government of the Russian Federation (Contract No. 14.Y26.31.0031)

References

  1. 1.
    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alibert, J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numerical investigations and potential applications. Int. J. Non Linear Mech. 80, 200–208 (2016)CrossRefGoogle Scholar
  5. 5.
    Dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2016)CrossRefGoogle Scholar
  6. 6.
    Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Z. Angew. Math. Mech. 95, 880–887 (2015).  https://doi.org/10.1002/zamm.201400036. (ISSN: 1521-4001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Giuseppe, R.: Wave propagation in relaxed micromorphic continua: modelling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. 27, 551–570 (2015).  https://doi.org/10.1007/s00161-013-0329-2. (ISSN: 0935-1175)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Roveri, N., Carcaterra, A., Akay, A.: Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness. J. Acoust. Soc. Am. 126(5), 2306–2314 (2009)CrossRefGoogle Scholar
  9. 9.
    Christensen, J., Kadic, M., Wegener, M., Kraft, O.: Vibrant times for mechanical metamaterials. MRS Commun. 5, 453–462 (2015)CrossRefGoogle Scholar
  10. 10.
    Brennan, M.J., Dayou, J.: Global control of structural vibration using multiple-tuned tunable vibration neutralizers. J. Sound Vib. 258(2), 345–357 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brennan, M.J., Dayou, J.: Experimental verification of the optimal tuning of a tunable vibration neutralizer for global vibration control. Appl. Acoust. 64, 311–323 (2003)CrossRefGoogle Scholar
  12. 12.
    Dayou, J., Kim, S.M.: Control of kinetic energy of a one-dimensional structure using multiple vibration neutralizers. J. Sound Vib. 281, 323–340 (2005)CrossRefGoogle Scholar
  13. 13.
    Dayou, J.: Fixed-points theory for global vibration control using vibration neutralizer. J. Sound Vib. 292, 765–776 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, S., Dayou, J.: Derivation of the fixed-points theory with some numerical simulations for global vibration control of structure with closely spaced natural frequencies. Mech. Based Des. Struct. Mach. 34, 49–68 (2006)CrossRefGoogle Scholar
  15. 15.
    Chen, J.S., Sharma, B., Sun, C.T.: Dynamic behaviour of sandwich structure containing spring-mass resonators. Compos. Struct. 93, 2120–2125 (2011)CrossRefGoogle Scholar
  16. 16.
    Sharma, B., Sun, C.T.: Impact load mitigation in sandwich beams using local resonators. J. Sandw. Struct. Mater. 18(1), 50–64 (2016)CrossRefGoogle Scholar
  17. 17.
    Sharma, B.: Dynamic Behavior of Sandwich Beams with Internal Resonators. Open access dissertation, Purdue University (2013)Google Scholar
  18. 18.
    Maugin, G.A.: On some generalizations of Boussinesq and KdV systems. Proc. Estonian Acad. Sci. Phys. Math. 44(1), 40–55 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Boutin, C., Roussillon, P.: Wave propagation in presence of oscillators on the free surface. Int. J. Eng. Sci. 44(3–4), 180–204 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schwan, L., Boutin, C.: Unconventional wave reflection due to “resonant surface”. Wave Motion 50(4), 852–868 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Auriault, J.-L., Boutin, C.: Long wavelength inner-resonance cut-off frequencies in elastic composite materials. Int. J. Solids Struct. 49(23–24), 3269–3281 (2012)CrossRefGoogle Scholar
  22. 22.
    Krödel, S., Thomé, N., Daraio, C.: Wide band-gap seismic metastructures. Extrem. Mech. Lett. 4, 111–117 (2015)CrossRefGoogle Scholar
  23. 23.
    Mitchell, S.J., Pandolfi, A., Ortiz, M.: Metaconcrete: designed aggregates to enhance dynamic performance. J. Mech. Phys. Solids 65, 69–81 (2014)CrossRefGoogle Scholar
  24. 24.
    Antoniadis, I., Chronopoulos, D., Spitas, V., Koulocheris, D.: Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element. J. Sound Vib. 346, 37–52 (2015)CrossRefGoogle Scholar
  25. 25.
    Chronopoulos, D., Antoniadis, I., Collet, M., Ichchou, M.: Enhancement of wave damping within metamaterials having embedded negative stiffness inclusions. Wave Motion 58, 165–179 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51, 1534–1541 (2014)CrossRefGoogle Scholar
  27. 27.
    Li, Z., Wang, X.: On the dynamic behaviour of a two-dimensional elastic metamaterial system. Int. J. Solids Struct. 78(79), 174–181 (2016)CrossRefGoogle Scholar
  28. 28.
    Fedotovskii, V.S.: Transverse waves in a dispersive metamaterial with spherical inclusions. Acoust. Phys. 61, 281–286 (2015)CrossRefGoogle Scholar
  29. 29.
    Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass–spring structures. J. Sound Vib. 266, 1053–1078 (2003)CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Yu, D., Li, L., Zhao, H., Wen, J., Wen, X.: Design guidelines for flexural wave attenuation of slender beams with local resonators. Phys. Lett. 362, 344–347 (2007)CrossRefGoogle Scholar
  31. 31.
    Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330, 2536–2553 (2011)CrossRefGoogle Scholar
  32. 32.
    Liu, A.P., Zhu, R., Liu, X.N., Hu, G.K., Huang, G.L.: Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials. Wave Motion 49, 411–426 (2012)CrossRefGoogle Scholar
  33. 33.
    Srivastava, A.: Elastic metamaterials and dynamic homogenization: a review. Int. J. Smart Nano Mater. 6(1), 41–60 (2015)CrossRefGoogle Scholar
  34. 34.
    Thompson, D.J.: A continuous damped vibration absorber to reduce broad-band wave propagation in beams. J. Sound Vib. 311, 824–842 (2008)CrossRefGoogle Scholar
  35. 35.
    Xiao, Y., Wen, J., Wen, X.: Broadband locally resonant beams containing multiple periodic arrays of attached resonators. Phys. Lett. A 376, 1384–1390 (2012)CrossRefGoogle Scholar
  36. 36.
    Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)CrossRefGoogle Scholar
  37. 37.
    Zhu, R., Huang, G.L., Huang, H.H., Sun, C.T.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 375, 2863–2867 (2011)CrossRefGoogle Scholar
  38. 38.
    Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6(1), 14–40 (2015)CrossRefGoogle Scholar
  39. 39.
    Tripathi, A., Bajaj, A.K.: Topology optimization and internal resonances in transverse vibrations of hyperelastic plates. Int. J. Solids Struct. 81, 311–328 (2016)CrossRefGoogle Scholar
  40. 40.
    Buckmann, T., Kadic, M., Schittny, R., Wegener, M.: Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material. Phys. Status Solidi B 252(7), 1671–1674 (2015)CrossRefGoogle Scholar
  41. 41.
    Ansys.: Ansys Documentation. (Online) Ansys.Google Scholar
  42. 42.
    Sugino, C., Leadenham, S., Ruzzene, M., Erturk, A.: On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. J. Appl. Phys. 120, 134501 (2016).  https://doi.org/10.1063/1.4963648 CrossRefGoogle Scholar
  43. 43.
    De Masi, A., Olla, S.: Quasi-static hydrodynamic limits. J. Stat. Phys. 161(5), 1037–1058 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    De Masi, A., Galves, A., Löcherbach, E., Presutti, E.: Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158(4), 866–902 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A 472(2185), 20150790 (2016)CrossRefGoogle Scholar
  46. 46.
    Mead, D.J.: A new method of analyzing wave propagation in periodic structures: applications to periodic Timoshenko beams and stiffened plates. J. Sound Vib. 104, 9–27 (1986)CrossRefGoogle Scholar
  47. 47.
    Bernardino, Chiaia., Placidi, L., Livio, Conti.: Analytical and numerical investigations of piece-wise smooth tuned mass dampers. In: Valeri Mladenov. (a cura di): Elias Giacoumidis; Jinlong Wei, Recent Advances on Systems, Signals, Communications and Computers. RECENT ADVANCES IN ELECTRICAL ENGINEERING, vol. 57, 33-38 (2015) ISBN: 978-1-61804-355-9, ISSN: 1790-5117Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Structural Engineering and Construction Management Department, Faculty of Engineering and TechnologyFuture University in EgyptCairoEgypt
  2. 2.International Telematic University UninettunoRomaItaly

Personalised recommendations