Advertisement

Plastic limit pressures for cracked tube containing twin collinear axial through-wall cracks

  • M. Katinić
  • D. Kozak
  • Ž. Božić
  • I. Gelo
Original
  • 24 Downloads

Abstract

The paper analyzes plastic limit loads for cracked tubes containing twin collinear axial through-wall cracks under internal pressure. Calculations of these loads are based on small strain finite element limit analysis using elastic-perfectly plastic materials. Flow stress as the average value of the yield stress and the ultimate tensile strength was used in the analysis. An effect of crack configurations on plastic limit loads is investigated. The obtained values of plastic limit load present coalescence pressures of twin collinear cracks. The effect of flow stress on coalescence pressure was also investigated. The analysis has been shown that criterion for characterization of the twin collinear axial through-wall cracks into equivalent single crack according to SINTAP procedure is too conservative.

Keywords

Plastic limit pressure Tube Axial through-wall cracks Finite element RIKS method 

Notes

References

  1. 1.
    Gubeljak, N., Predan, J., Kozak, D.: Leak-before-break analysis of a Pressurizer–estimation of the elastic-plastic semi-elliptical through-wall crack opening displacement. Struct. Integr. Life 12(1), 31–34 (2012)Google Scholar
  2. 2.
    Kozak, D., Damjanović, D., Katinić, M.: Integrity assessment of the butt weld joint with defect according to EN ISO 6520–1, Series 400. Struct. Integr. Life 16(2), 120–124 (2016)Google Scholar
  3. 3.
    Kozak, D., Gubeljak, N., Konjatić, P., Sertić, J.: Yield load solutions of heterogeneous welded joints. Int. J. Press. Vessels Pip. 86, 807–812 (2009)CrossRefGoogle Scholar
  4. 4.
    Kraedegh, A., Li, W., Sedmak, A., Grbovic, A., Trisovic, N., Mitrovic, R., Kirin, S.: Simulation of fatigue crack growth in A2024–T351 T welded joint. Struct. Integr. Life 17(1), 1451–3749 (2017)Google Scholar
  5. 5.
    Katinić, M., Kozak, D., Konjatić, P., Damjanović, D.: A numerical elastic analysis on the interaction of twin edge cracks in a finite plate under tension. Struct. Integr. Life 14(3), 151–154 (2014)Google Scholar
  6. 6.
    Kim, J.S., et al.: Investigation Report for Steam Generator Tubes Pulled Out from Ulchin Unit 1. Korea Atomic Energy Research Institute, Daejeon (1999)Google Scholar
  7. 7.
    Knag, S.C., et al.: Regulatory Technical Report on the Steam Generator Tubes Safety of Nuclear Power Plants, KINS/AR-669. Korea Institute of Nuclear Safety, Daejeon (1999)Google Scholar
  8. 8.
    MacDonald, P.E. et al.: Steam generator tube failures. NUREG/CR-6365, INEL-95/0393 (1996)Google Scholar
  9. 9.
    Rahman, S., et al.: Crack-opening-area analyses for circumferential through-wall cracks in pipes–part i: analytical models. Int. J. Press. Vessels Pip. 75, 357–373 (1998)CrossRefGoogle Scholar
  10. 10.
    Rahman, S., et al.: Crack-opening-area analyses for circumferential through-wall cracks in pipes–part ii: model validations. Int. J. Press. Vessels Pip. 75, 375–396 (1998)CrossRefGoogle Scholar
  11. 11.
    Firmature, R., et al.: Elastic-plastic analysis of off-center cracks in cylindrical structures. Eng. Fract. Mech. 66, 15–39 (2000)CrossRefGoogle Scholar
  12. 12.
    Foxen, J., et al.: Elastic-plastic analysis of small cracks in tubes under internal pressure and bending. Nucl. Eng. Des. 197, 75–87 (2000)CrossRefGoogle Scholar
  13. 13.
    Kim, Y.J., et al.: Engineering leak-before-break analyses of pressurized piping: Part I–Crack opening displacement. JSME Int. J., Ser. A 47(4), 591–599 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kim, Y.J., et al.: Engineering \(J\) estimation methods for leak-before-break analyses of nuclear piping. JSME Int. J., Ser. A 48(1), 41–49 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kim, Y.J.: Non-linear fracture mechanics analysis of through-wall cracked pipes for leak-before-break analysis. J. Press. Equip. Syst. 2, 71–78 (2004)Google Scholar
  16. 16.
    Kim, Y.J., et al.: Crack opening analysis of complex cracked pipes. Int. J. Fract. 111, 71–86 (2001)CrossRefGoogle Scholar
  17. 17.
    Kim, Y.J., et al.: Plastic limit pressure for cracked pipes using finite element analyses. Int. J. Press. Vessels Pip. 79, 321–330 (2002)CrossRefGoogle Scholar
  18. 18.
    Kim, Y.J., et al.: Elastic-plastic \(J\) and COD estimates for axial through-wall cracked pipes. Int. J. Press. Vessels Pip. 79, 451–464 (2002)CrossRefGoogle Scholar
  19. 19.
    Kim, Y. J. et al.: Net-section limit pressure and engineering \(J\) estimates for axial part-through surface cracked pipes. In: ASME Pressure Vessels and Piping Division Conference, San Antonio, Texas (2007)Google Scholar
  20. 20.
    Lee, J. H. et al.: Failure behavior of steam generator tubes containing two parallel through-wall axial cracks. In: Proceedings of the Korean Nuclear Society Spring Meeting Cheju, Korea (2001)Google Scholar
  21. 21.
    Moon, S.I., Kim, Y.J., Lee, J.H.: Estimation of plastic collapse load of steam generator with two parallel axial through-wall cracks. ASME PVP 464, 223–230 (2003)Google Scholar
  22. 22.
    Lee, J.H., Park, Y.W., Song, M.H., Kim, Y.J., Moon, S.I.: Determination of equivalent single crack based on coalescence criterion of collinear axial cracks. Nucl. Eng. Des. 205, 1–11 (2001)CrossRefGoogle Scholar
  23. 23.
    Moon, S.I., Kim, Y.J., Lee, J.H., Park, Y.W., Song, M.H.: Optimum local failure model of steam generator tubes with multiple axial through-wall cracks. Nucl. Eng. Des. 235, 2099–2108 (2005)CrossRefGoogle Scholar
  24. 24.
    Moon, S.I., Chang, Y.S., Kim, Y.J., Lee, J.H., Park, Y.W., Song, M.H.: Determination of failure pressure for tubes with two non-aligned axial through-wall cracks. Int. J. Fract. 144, 91–101 (2007)CrossRefGoogle Scholar
  25. 25.
    Kim, N.H., Oh, C.S., Kim, Y.J.: A method to predict failure pressures of steam generator tubes with multiple through-wall cracks. Eng. Fract. Mech. 77, 842–855 (2010)CrossRefGoogle Scholar
  26. 26.
    ABAQUS User’s Manual. Version 6.10, Hibbitt, Karlsson and Sorensen Inc. (2010)Google Scholar
  27. 27.
    SINTAP: Structural integrity assessment procedure. Final Revision, EU-Project BE 95-1462, Brite Euram Programme, Brussels (1999)Google Scholar
  28. 28.
    Gubeljak, N., Zerbst, U., Predan, J., Oblak, M.: Application of the european SINTAP procedure to the failure analysis of a broken forklift. Eng. Fail. Anal. 11(1), 33–47 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering FacultyUniversity of OsijekSlavonski BrodCroatia
  2. 2.Faculty of Mechanical Engineering and Naval ArchitectureUniversity of ZagrebZagrebCroatia

Personalised recommendations