Advertisement

Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling

  • Michele De Angelo
  • Emilio Barchiesi
  • Ivan GiorgioEmail author
  • B. Emek Abali
Original
  • 47 Downloads

Abstract

Mechanical properties are investigated for a class of microstructured materials with promising applications. Specifically, we consider a composite material with orthogonal, mutually interconnected fibers building a pantographic substructure. In order to predict the behavior of such a system in three-dimensional continuum, a reduced-order model is introduced by means of a bi-dimensional elastic surface accurately describing large deformations. The properties of this reduced-order model are characterized by an elastic energy density that involves second space derivatives of the displacement for capturing the resistance of twisted and bent fibers in plane as well as out of plane. For determining the coefficients in the elastic energy of the reduced-order model, we utilize a numerical inverse analysis and make use of ad hoc computational experiments performed by a direct numerical simulation on the microscale with detailed modeling of the pantographic substructure. This reduced-order model represents a homogenized material on macro-scale with its substructure on microscale. The homogenized model is capable of describing materials response at a significantly less computational cost than the direct numerical simulations.

Keywords

Material identification Elastic surface theory Nonlinear elasticity Buckling 

Notes

References

  1. 1.
    Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials, vol. 55. Springer, Berlin (2016)Google Scholar
  2. 2.
    Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)Google Scholar
  3. 3.
    Abali, B.E., Wu, C.-C., Müller, W.H.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28(5), 1221–1246 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Alibert, J., Corte, A.Della: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-D foam-like representative volume elements. Mech. Mater. 98, 44–58 (2016)Google Scholar
  7. 7.
    Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-D periodic representative volume element for random foam microstructures. Mech. Mater. 66, 7–20 (2013)Google Scholar
  8. 8.
    Altenbach, H., Eremeyev, V.A.: Surface viscoelasticity and effective properties of materials and structures. In: Altenbach, H., Kruch, S. (eds.) Advanced Materials Modelling for Structures, vol. 19, pp. 9–16. Springer, Berlin (2013)Google Scholar
  9. 9.
    Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Continu. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0665-3 MathSciNetzbMATHGoogle Scholar
  11. 11.
    Assidi, M., Boubaker, B.B., Ganghoffer, J.-F.: Equivalent properties of monolayer fabric from mesoscopic modelling strategies. Int. J. Solids Struct. 48(20), 2920–2930 (2011)Google Scholar
  12. 12.
    Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Contin. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0626-x Google Scholar
  13. 13.
    Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, vol. 59, pp. 239–258. Springer, Singapore (2017)Google Scholar
  14. 14.
    Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids. (2018).  https://doi.org/10.1177/1081286517735695 Google Scholar
  15. 15.
    Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanomech. Sci. Technol. Int. J. 6(2), 161–178 (2015)Google Scholar
  16. 16.
    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Carinci, G., De Masi, A., Giardinà, C., Presutti, Errico: Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3(4), 381–471 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Challamel, N., Kocsis, A., Wang, C.M.: Discrete and non-local elastica. Int. J. Non-Linear Mech. 77, 128–140 (2015)Google Scholar
  19. 19.
    Chaouachi, F., Rahali, Y., Ganghoffer, J.-F.: A micromechanical model of woven structures accounting for yarn-yarn contact based on Hertz theory and energy minimization. Compos. Part B: Eng. 66, 368–380 (2014)Google Scholar
  20. 20.
    Cuomo, M., dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z. Angew. Math. Phys. 67(3), 1–23 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles. J. Stat. Phys. 133(2), 281–345 (2008)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    dell’Isola, F., Cuomo, M., Greco, L., Corte, A.Della: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    dell’Isola, F., Corte, A.Della, Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numericalinvestigations and potential applications. Int. J. Non-Linear Mech. 80, 200–208 (2016)Google Scholar
  25. 25.
    dell’Isola, F., Corte, A.Della, Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)Google Scholar
  26. 26.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 23 (2016)Google Scholar
  27. 27.
    dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66, 3473–3498 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    dell’Isola, F., Seppecher, P., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0689-8 Google Scholar
  29. 29.
    dell’Isola, F., Steigmann, D.J.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 18, 113–125 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterialsbased on local resonances: Homogenization, optimization andapplications. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1, vol. 89, pp. 247–274. Springer, Cham (2018)Google Scholar
  31. 31.
    Dos Reis, F., Ganghoffer, J.-F.: Discrete homogenization of architectured materials: implementation of the method in a simulation tool for the systematic prediction of their effective elastic properties. Tech. Mech. 30(1–3), 85–109 (2010)Google Scholar
  32. 32.
    Dos Reis, F., Ganghoffer, J.-F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)Google Scholar
  33. 33.
    Dos Reis, F., Ganghoffer, J.-F.: Homogenized elastoplastic response of repetitive 2D lattice truss materials. Comput. Mater. Sci. 84, 145–155 (2014)Google Scholar
  34. 34.
    El Nady, K., Dos Reis, F., Ganghoffer, J.-F.: Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models. Compos. Struct. 170, 271–290 (2017)Google Scholar
  35. 35.
    Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0668-0
  38. 38.
    Ganzosch, G., dell’Isola, F., Turco, e, Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2016)Google Scholar
  39. 39.
    Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 1–17 (2016)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Giorgio, I., Corte, A.Della, dell’Isola, F., Steigmann, D.: Buckling modes in pantographic lattices. C. R. Mec. 344(7), 487–501 (2016)Google Scholar
  41. 41.
    Giorgio, I., Harrison, P., dell’Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc. R. Soc. A 474(2216), 20 (2018)Google Scholar
  42. 42.
    Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A 473(2207), 21 (2017).  https://doi.org/10.1098/rspa.2017.0636 MathSciNetzbMATHGoogle Scholar
  43. 43.
    Goda, I., Assidi, M., Ganghoffer, J.-F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)Google Scholar
  44. 44.
    Golaszewski, M., Grygoruk, R., Giorgio, I., Laudato, M., Di Cosmo, F.: Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions. Contin. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0692-0 Google Scholar
  45. 45.
    Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local \({\bar{B}}\) formulation for isogeometric Kirchhoff-Love shells. Comput. Methods Appl. Mech. Eng. 332, 462–487 (2018)MathSciNetGoogle Scholar
  46. 46.
    Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Guo, Z., Shi, X., Chen, Y., Chen, H., Peng, X., Harrison, P.: Mechanical modeling of incompressible particle-reinforced neo-Hookean composites based on numerical homogenization. Mech. Mater. 70, 1–17 (2014)Google Scholar
  48. 48.
    Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)Google Scholar
  49. 49.
    Harrison, P., Alvarez, M.F., Anderson, D.: Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int. J. Solids Struct. (2017).  https://doi.org/10.1016/j.ijsolstr.2016.11.008 Google Scholar
  50. 50.
    Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33–52 (2018)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano-to macro-scales. Eur. J. Mech. A Solids 71, 292–319 (2018)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Laudato, M., Di Cosmo, F.: Euromech 579 Arpino 3–8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly) inextensible fibers—a review of presentations and discussions. Continu. Mech. Thermodyn.  https://doi.org/10.1007/s00161-018-0654-6 (2018)
  53. 53.
    Mandadapu, K.K., Abali, B.E., Papadopoulos, P.: On the polar nature and invariance properties of a thermomechanical theory for continuum-on-continuum homogenization. arXiv preprint arXiv:1808.02540 (2018)
  54. 54.
    Maurin, F., Greco, F., Desmet, W.: Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models. Contin. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0641-y Google Scholar
  55. 55.
    Milton, G., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Niiranen, J., Balobanov, V., Kiendl, J., Hosseini, S.B.: Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro-and nano-beam models. Math. Mech. Solids. (2017).  https://doi.org/10.1177/1081286517739669 Google Scholar
  58. 58.
    Placidi, L., Andreaus, U., Corte, A.Della, Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Placidi, L., El Dhaba, A.R.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2D fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67(5), 114 (2016)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Polizzotto, Castrenze: A second strain gradient elasticity theory with second velocity gradient inertia-Part I: constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013)Google Scholar
  63. 63.
    Polizzotto, Castrenze: A second strain gradient elasticity theory with second velocity gradient inertia-Part II: dynamic behavior. Int. J. Solids Struct. 50(24), 3766–3777 (2013)Google Scholar
  64. 64.
    Queiruga, A., Zohdi, T.: Microscale modeling of effective mechanical and electrical properties of textiles. Int. J. Numer. Methods Eng. 108(13), 1603–1625 (2016)MathSciNetGoogle Scholar
  65. 65.
    Rahali, Y., Ganghoffer, J.-F., Chaouachi, F., Zghal, : Strain gradient continuum models for linear pantographic structures: a classification based on material symmetries. J. Geom. Symmetry Phys. 40, 35–52 (2015)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Rahali, Y., Goda, I., Ganghoffer, J.-F.: Numerical identification of classical and nonclassical moduli of 3D woven textiles and analysis of scale effects. Compos. Struct. 135, 122–139 (2016)Google Scholar
  68. 68.
    Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68(5), 050801 (2016)Google Scholar
  69. 69.
    Scerrato, D., Giorgio, I., Rizzi, N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 1–19 (2016)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Z. Angew. Math. Mech.: ZAMM 96(11), 1268–1279 (2016)MathSciNetGoogle Scholar
  71. 71.
    Shirani, M., Luo, C., Steigmann, D.J.: Cosserat elasticity of lattice shells with kinematically independent flexure and twist. Continu. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0679-x Google Scholar
  72. 72.
    Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)Google Scholar
  73. 73.
    Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67, 28 (2016)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 20 (2017)Google Scholar
  76. 76.
    Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)Google Scholar
  77. 77.
    Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94–109 (2018)Google Scholar
  78. 78.
    Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)Google Scholar
  79. 79.
    Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 16 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Research Center for the Mathematics and Mechanics of Complex SystemsUniversità dell’AquilaL’AquilaItaly
  2. 2.Department of Structural and Geotechnical EngineeringUniversità di Roma La SapienzaRomeItaly
  3. 3.Chair of Continuum Mechanics and Constitutive Theory, Institute of MechanicsTechnische Universität BerlinBerlinGermany

Personalised recommendations