Advertisement

Dynamic fracture of a nano-cracked finite exponentially inhomogeneous piezoelectric solid

  • Petia Dineva
  • Marin Marinov
  • Tsviatko Rangelov
Original
  • 15 Downloads

Abstract

Aim of the study is to develop, verify and apply in simulations an efficient non-hypersingular traction boundary integral equation method for solution of anti-plane dynamic problem of a finite exponentially inhomogeneous piezoelectric solid with a nano-crack. The modeling approach is in the frame of continuum mechanics, wave propagation theory, the Gurtin and Murdoch surface elasticity theory and linear fracture mechanics. The simulations reveal the dependence of the stress concentration factors on the electromechanical coupling, on the type and characteristics of the dynamic load, on the position-dependent material properties, on the surface elasticity, on the size effect and on the wave–nanocrack–material gradient interaction in a bounded solid.

Keywords

Finite piezoelectric solid Exponential inhomogeneity Surface elasticity Anti-plane blunt nano-crack Dynamic load SCF BIEM 

Mathematical Subject Classification

35Q74 74S15 74H35 

Notes

References

  1. 1.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mach. Anal. 57, 291–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Haftbaradaran, H., Shodja, H.M.: Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. Int. J. Solids Struct. 46, 2978–2987 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A Solids 28, 926–934 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kim, C.I., Schiavone, P., Ru, C.Q.: The effect of surface elasticity on a mode-III interface crack. Arch. Mech. 63(3), 267–286 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Wang, G.F., Feng, X.Q., Wang, T.J., Gao, W.: Surface effects on the near-tip stresses for Mode-I and Mode-III cracks. ASME J. Appl. Mech. 75, 011001 (2008)CrossRefGoogle Scholar
  6. 6.
    Hoagland, R.G., Daw, M.S., Hirth, J.P.: Some aspects of forces and fields in atomic models of crack tips. J. Mater. Res. 6, 2565–2571 (1991)CrossRefGoogle Scholar
  7. 7.
    Wang, G.F., Li, Y.: Influence of surface tension on mode-I crack tip field. Eng. Fract. Mech. 109, 290–301 (2013)CrossRefGoogle Scholar
  8. 8.
    Fu, X.L., Wang, G.F., Feng, X.Q.: Effects of surface elasticity on mixed-mode fracture. Int. J. Appl. Mech. 3(3), 435–446 (2011)CrossRefGoogle Scholar
  9. 9.
    Fu, X.L., Wang, G.F., Feng, X.Q.: Surface effects on the near-tip stress fields of a mode-II crack. Int. J. Fract. 151, 95–106 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Xu, J.Y., Dong, C.Y.: Surface and interface stress effects on the interaction of nano-inclusions and nano-cracks in an infinite domain under anti-plane shear. Int. J. Mech. Sci. 111–112, 12–23 (2016)CrossRefGoogle Scholar
  11. 11.
    Dong, C.Y., Lo, S.H.: An integral equation formulation of anti-plane inhomogeneities. Eng. Anal. Bound. Elem. 37, 1416–1425 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fang, X.Q., Wang, X.H., Zhang, L.L.: Interface effect on the dynamic stress around an elliptical nano-inhomogeneity subjected to anti-plane shear waves. Comput. Mater. Continua 16(3), 229–246 (2010)Google Scholar
  13. 13.
    Fang, X.Q., Zhang, L.L., Liu, J.X.: Dynamic stress concentration around two interacting coated nanowires with surface/interface effect. Meccanica 48(2), 287–296 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shodja, H.M., Pahlevania, L.: Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube. Eur. J. Mech. A Solids 32, 21–31 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yang, Q., Liu, J.X., Fang, X.Q.: Dynamic stress in a semi-infinite solid with a cylindrical nano-inhomogeneity considering nanoscale microstructure. Acta Mech. 223, 879–888 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, Q.F., Wang, G.F., Schiavone, P.: Diffraction of plane compressional waves by an array of nanosized cylindrical holes. ASME J. Appl. Mech 78, 021003 (2011)CrossRefGoogle Scholar
  17. 17.
    Xiao, J., Hu, Y., Zhang, F.: A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM-Z. Angew. Math. Mech. 96(5), 633–641 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fang, X.Q., Yang, Q., Liu, J.X., Feng, W.J.: Surfaces/interface effect around a piezoelectric nano-particle in a polymer matrix under compressional waves. Appl. Phys. Lett. 100, 151602 (2012a)CrossRefGoogle Scholar
  19. 19.
    Fang, X.Q., Liu, J.X., Dou, L.H., Chen, M.Z.: Dynamic strength around two interacting piezoelectric nano-fibers with surfaces/interfaces in solid under electro-elastic wave. Thin Solid Films 520, 3587–3592 (2012b)CrossRefGoogle Scholar
  20. 20.
    Dineva, P., Gross, D., Müller, R., Rangelov, T.: Dynamic Fracture of Piezoelectric Materials. Solutions of Time-Harmonic Problems via BIEM. Solid Mechanics and Its Applications, vol. 212. Springer International Publishing, Cham (2014)Google Scholar
  21. 21.
    Tan, X., Qui, S., He, W., Lei, D.: Functionally graded nano hardmetal materials made by Spark plasma sintering technology. J. Metastable Nanocryst. Mater. 23, 179–182 (2005)CrossRefGoogle Scholar
  22. 22.
    Nejad, M.Z., Hadi, A.: Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler Bernoulli nano-beams. Int. J. Eng. Sci. 106, 1–9 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guo, J., Chen, J., Pan, E.: A three-dimensional size-dependent layered model for simply-supported and functionally graded magnetoelectroelastic plates. Acta Mech. Solida Sin. 31(5), 652–671 (2018)CrossRefGoogle Scholar
  24. 24.
    Rangelov, T., Dineva, P.: Dynamic fracture behavior of a nanocrack in a piezoelectric plane. ZAMM Z. Angew. Math. Mech. 97(11), 1393–1405 (2017)MathSciNetGoogle Scholar
  25. 25.
    Landau, D.L., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)zbMATHGoogle Scholar
  26. 26.
    Davi, G., Milazzo, A.: Multidomain boundary integral formulation for piezoelectric materials fracture mechanics. Int. J. Solids Struct. 38, 7065–7078 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Cruse, T.A.: Two-dimensional BIE fracture mechanics analysis. Appl. Math. Model. 2, 287–293 (1978)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publications, Southampton (1998)zbMATHGoogle Scholar
  29. 29.
    Daros, C.H.: On modelling sh-waves in a class of inhomogeneous anisotropic media via the boundary element method. ZAMM-Z. Angew. Math. Mech. 90, 113–121 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rangelov, T., Dineva, P., Gross, D.: Effect of material inhomogeneity on the dynamic behavior of cracked piezoelectric solids: a BIEM approach. ZAMM-Z. Angew. Math. Mech. 88, 86–99 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Manolis, G., Dineva, P., Rangelov, T., Wuttke, F.: Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements. Solid Mechanics and its Applications, vol. 240. Springer International Publishing, Cham (2017)CrossRefzbMATHGoogle Scholar
  32. 32.
    Gross, D., Dineva, P., Rangelov, T.: BIEM solution of piezoelectric cracked finite solids under time-harmonic loading. Eng. Anal. Bound. Elem. 31(2), 152–162 (2007)CrossRefzbMATHGoogle Scholar
  33. 33.
    Zhang, C., Savidis, A., Zhu, H.: A time domain BIEM for crack analysis in functionally graded materials under impact loading. In: Denda, M. (ed.) Advances in Boundary Element Techniques II, pp. 405–412. Hoggar Press, Geneva (2001)Google Scholar
  34. 34.
    Zhang, C., Savidis, A., Savidis, G., Zhu, H.: Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comput. Mater. Sci. 26, 167–174 (2003)CrossRefGoogle Scholar
  35. 35.
    Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nanoinhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)CrossRefGoogle Scholar
  36. 36.
    Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rangelov, T., Marinov, M., Dineva, P.: Time-harmonic behaviour of cracked piezoelectric solid by boundary integral equation method. J. Theor. Appl. Mech. 44(1), 51–68 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ludwig, D.: The Radon transform on Euclidean space. Commun. Pure Appl. Math. 29, 49–81 (1966)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Bateman, H., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Petia Dineva
    • 1
  • Marin Marinov
    • 2
  • Tsviatko Rangelov
    • 3
  1. 1.Institute of MechanicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Computer Science DepartmentNew Bulgarian UniversitySofiaBulgaria
  3. 3.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations