Advertisement

The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate

  • Y. M. Yue
  • K. Y. XuEmail author
  • Z. Q. Tan
  • W. J. Wang
  • D. Wang
Original
  • 36 Downloads

Abstract

The present paper develops a size-dependent Kirchhoff microplate model with surface effects by using simplified strain gradient elasticity theory and surface elasticity theory. This new model is able to capture size-dependent behaviors and surface effects. The most noticeable difference of the proposed model from the existing plate models about microplates is that not only strain gradient and surface stress are taken into account, but also the surface-induced internal residual stresses are considered. Based on whether the plates having surface-induced internal residual stress or not, their governing equations have distinct differences. An extended Kantorovich method is employed to provide approximate closed-form solution for the rectangular microplate with simply supported boundary conditions. For the microplate with biaxial initial residual surface stress, the numerical results reflect that when the simply supported microplates do not have surface-induced internal residual stresses, internal length scale and biaxial surface residual stress have significant influence on the static bending of the microplates. However, when the simply supported microplates have nonzero surface-induced internal residual stresses, the effects of internal length scale and biaxial surface residual stress become very weak. It indicates that the effect of surface-induced internal residual stresses can counteract most of the effects of internal length scale and surface residual stress. This work provides a more general model for the analysis of microplate problems.

Keywords

Strain gradient Kirchhoff microplate Surface stress Surface-induced internal residual stress 

Notes

Acknowledgements

We give our sincere thanks to China Scholarship Council (CSC), National Natural Science Foundation of China (No.11072138), and Natural Science Foundation of Shanghai (No. 15ZR1416100).

References

  1. 1.
    Lee, K.K., Lim, R.R., et al.: Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model. Appl. Phys. Lett. 77, 1617 (2000)CrossRefGoogle Scholar
  2. 2.
    Mcfarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)CrossRefGoogle Scholar
  3. 3.
    Motz, C., Weygand, D., Senger, J., Gumbsch, P.: Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater. 56, 1942–1955 (2008)CrossRefGoogle Scholar
  4. 4.
    Hu, Y.Y., Qi, Q., Jiang, C.: Influence of different dielectrics on the first layer grain sizes and its effect on the mobility of pentacene-based thin-film transistors. Appl. Phys. Lett. 96, 133311 (2010)CrossRefGoogle Scholar
  5. 5.
    Aifantis, E.C.: Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst. Technol. 15, 109–115 (2009)CrossRefGoogle Scholar
  6. 6.
    Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRefGoogle Scholar
  7. 7.
    Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ma, H.M., Gao, X.L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Asghari, M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghayesh, M.H., Farokhi, H.: Nolinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)CrossRefzbMATHGoogle Scholar
  11. 11.
    Romano, G., Barretta, R., Diaco, M.: Micromorphic continua: non-redundant formulations. Continuum Mech. Thermodyn. 28, 1659–1670 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.-D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)CrossRefzbMATHGoogle Scholar
  13. 13.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  14. 14.
    Simsek, M.: Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 50, 2112–2123 (2011)CrossRefGoogle Scholar
  15. 15.
    Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., Penna, R.: Stress-driven two-phase integral elasticity for torsion of nano-beams. Compos. Part B 145, 62–69 (2018)CrossRefGoogle Scholar
  17. 17.
    Lazopoulos, K.A.: On the gradient strain elasticity theory of plates. Eur. J. Mech. A/Solids 23, 843–852 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Papargyri-Beskou, S., Beskos, D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Papargyri-Beskou, S., Giannakopoulos, A.E., Beskos, D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975a)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gurtin, M.E., Murdoch, A.I.: Addenda to our paper: a continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59, 389–390 (1975b)CrossRefzbMATHGoogle Scholar
  22. 22.
    Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)CrossRefzbMATHGoogle Scholar
  23. 23.
    Eremeyev, V.A., Altenbach, H., Morozov, N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54(2), 98–100 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, K.F., Wang, B.L.: Effect of residual surface stress and surface elasticity on the nonlinear free vibration of nanoscale plates. J. Appl. Phys. 112, 013520 (2012)CrossRefGoogle Scholar
  25. 25.
    Wang, K.F., Wang, B.L.: Effect of surface energy on the nonlinear postbuckling behavior of nanoplates. Int. J. Non-linear Mech. 55, 19–24 (2013)CrossRefGoogle Scholar
  26. 26.
    Liu, C., Rajapakse, R.K.N.D.: A size-dependent continuum model for nanoscale circular plates. IEEE T. Nanotechnol. 12, 13–20 (2013)CrossRefGoogle Scholar
  27. 27.
    Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lazopoulos, K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commum. 36, 777–783 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, K.F., Wang, B.L.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Physica E 44(2), 448–453 (2011)CrossRefGoogle Scholar
  31. 31.
    Zhang, X., Aifantis, K.E., Senger, J., Weygand, D., Zaiser, M.: Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure? J. Mater. Res. 29(18), 2116–2128 (2014)CrossRefGoogle Scholar
  32. 32.
    Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)CrossRefGoogle Scholar
  33. 33.
    Zhang, G.Y., Gao, X.L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Shaat, M., Abdelkefi, A.: Size dependent and micromechanical modeling of strain gradient based nanoparticle composite plates with surface elasticity. Eur. J. Mech. A/Solids 58, 54–68 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Eremeyev, V. A., Rosi, G., Naili, S.: Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. Math. Mech. Solids (2018),  https://doi.org/10.1177/1081286518769960
  36. 36.
    Park, H.S., Klein, P.A.: Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56, 3144–3166 (2008)CrossRefzbMATHGoogle Scholar
  37. 37.
    Yun, G., Park, H.S.: Surface stress effects on the bending properties of fcc metal nanowires. Phys. Rev. B 79, 195421 (2009)CrossRefGoogle Scholar
  38. 38.
    Song, F., Huang, G.L., Park, H.S., Liu, X.N.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)CrossRefGoogle Scholar
  39. 39.
    Yue, Y.M., Kai, K.Y., Ru, C.Q.: Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity. Int. J. Non-Liner Mech. 88, 67–73 (2017)CrossRefGoogle Scholar
  40. 40.
    Ru, C.Q.: A strain-consistent elastic plate model with surface elasticity. Continuum Mech. Therm. 28, 263–273 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Mindlin, R.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 52–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Mindlin, R.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRefGoogle Scholar
  43. 43.
    Mindlin, R., Eshelby, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)CrossRefzbMATHGoogle Scholar
  44. 44.
    Altan, B.S., Aifantis, E.C.: On the structure of the mode-III crack-tip in gradient elasticity. Scripta Meter. 26, 319–324 (1992)CrossRefGoogle Scholar
  45. 45.
    Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)CrossRefGoogle Scholar
  46. 46.
    Li, S., Miskioglu, I., Altan, B.S.: Solution to line loading of a semi-infinite solid in gradient elasticity. Int. J. Solids Struct. 41, 3395–3410 (2004)CrossRefzbMATHGoogle Scholar
  47. 47.
    Gutkin, M.Y.: Nanoscopics of dislocations and disclinations in gradient elasticity. Rev. Adv. Mater. Sci. 1, 27–60 (2000)Google Scholar
  48. 48.
    Gitman, I.M., Askes, H., Kuhl, E., Aifantis, E.C.: Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. Int. J. Solids Struct. 47, 1099–1107 (2010)CrossRefzbMATHGoogle Scholar
  49. 49.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)CrossRefzbMATHGoogle Scholar
  50. 50.
    Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill Book Company, New York (1959)zbMATHGoogle Scholar
  51. 51.
    Ungbhakorn, A., Singhatanadgid, P.: Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method. Comp. Struct. 73, 120–128 (2006)CrossRefGoogle Scholar
  52. 52.
    Ansari, R., Gholami, R., Shojaei, F.M., Mohammadi, V., Sahmani, S.: Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Comp. Struct. 100, 385–397 (2013)CrossRefGoogle Scholar
  53. 53.
    Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008)CrossRefzbMATHGoogle Scholar
  54. 54.
    Lachut, M.J., Sader, J.E.: Effect of surface stress on the stiffness of cantilever plates Phys. Rev. Lett. 99, 206102 (2007)CrossRefGoogle Scholar
  55. 55.
    Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2007)Google Scholar
  56. 56.
    Movassagh, A.A., Mahmoodi, M.J.: A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. Eur. J. Mech. A-Solid. 40, 50–59 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Y. M. Yue
    • 1
  • K. Y. Xu
    • 2
    Email author
  • Z. Q. Tan
    • 3
  • W. J. Wang
    • 4
  • D. Wang
    • 5
  1. 1.Department of Engineering MechanicsShijiazhuang Tiedao UniversityShijiazhuangChina
  2. 2.Department of Mechanics, Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  3. 3.School of Mechanical EngineeringChangzhou UniversityChangzhouChina
  4. 4.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  5. 5.HCIG New-Energy Co., LtdShijiazhuangChina

Personalised recommendations