Advertisement

A two-scale homogenization analysis of porous magneto-electric two-phase composites

  • Matthias LabuschEmail author
  • Jörg Schröder
  • Doru C. Lupascu
Original
  • 13 Downloads

Abstract

A computational homogenization analysis for the simulation of porous magneto-electric composite materials is presented. These materials combine two or more ferroic states with each other enabling a coupling between magnetization and electric polarization. This magneto-electric coupling finds application in sensor technology or data storage devices. Since most single-phase multiferroics show coupling at very low temperatures beyond technically relevant applications, two-phase composites, consisting of a ferroelectric and a ferromagnetic phases, are manufactured. They generate a strain-induced magneto-electric coupling at room temperature. The performance and reliability of these materials is influenced by defects or pores, which can arise during the manufacturing process. We analyze the impact of pores on the magnitude of the magneto-electric coupling coefficient. In order to determine the effective properties of the composite, a two-scale finite element (\(\hbox {FE}^2\)) homogenization approach is performed. It combines the macroscopic and microscopic scale by direct incorporation of the microscopic morphology. We derive the basic equations for the localization and the homogenization of the individual field variables and give an algorithmic expression for the effective tangent moduli. We discuss the influence of pores on the magneto-electric coupling in two-phase composites by analyzing numerical examples.

Keywords

Homogenization Porous composites \(\hbox {FE}^2\)-method Effective properties Magneto–electro-mechanical coupling 

Notes

Acknowledgements

We gratefully acknowledge the financial support by the German Research Foundation (DFG) in the framework of the research unit 1509 “Ferroic Functional Materials—Multiscale Modeling and Experimental Characterization”, Projects SCHR 570/12-2 and LU 729/12-2. The authors sincerely acknowledge the image of a porous sample provided by Morad Etier.

References

  1. 1.
    Astrov, D.N.: The magnetoelectric effect in antiferromagnetics. Soviet Phys. JETP 38, 984–985 (1960)Google Scholar
  2. 2.
    Astrov, D.N.: Magnetoelectric effect in chromium oxide. J. Exp. Theor. Phys. 40, 1035–1041 (1961)Google Scholar
  3. 3.
    Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226, 2789–2806 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008). ISSN 1476-1122CrossRefGoogle Scholar
  5. 5.
    Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)CrossRefGoogle Scholar
  6. 6.
    Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007). ISSN 1476-1122CrossRefGoogle Scholar
  7. 7.
    Crottaz, O., Rivera, J.-P., Revaz, B., Schmid, H.: Magnetoelectric effect of \(\text{ Mn }_3\text{ B }_7\text{ O }_{13}{\text{ I }}\) boracite. Ferroelectrics 204, 125–133 (1997)CrossRefGoogle Scholar
  8. 8.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)CrossRefGoogle Scholar
  9. 9.
    Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007)CrossRefGoogle Scholar
  10. 10.
    Etier, M., Shvartsman, V.V., Gao, Y., Landers, J., Wende, H., Lupascu, D.C.: Magnetoelectric effect in (0–3) \(\text{ CoFe }_2{\text{ O }}_4\)\(\text{ BaTiO }_3\) (20/80) composite ceramics prepared by the organosol route. Ferroelectrics 448, 77–85 (2013)CrossRefGoogle Scholar
  11. 11.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005)CrossRefGoogle Scholar
  12. 12.
    Hill, R.: Elastic properties of reinforced solids—some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRefGoogle Scholar
  14. 14.
    Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interaction and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)CrossRefGoogle Scholar
  15. 15.
    Keip, M.-A.: Modeling of electro-mechanically coupled materials on multiple scales. PhD thesis, University of Duisburg-Essen (2012)Google Scholar
  16. 16.
    Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)CrossRefGoogle Scholar
  17. 17.
    Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kumar, M.M., Srinivas, A., Kumar, G.S., Suryanarayana, S.V.: Investigation of the magnetoelectric effect in \(\text{ BiFeO }_3\)\(\text{ BaTiO }_3\) solid solutions. J. Phys. Condens. Matter 11, 8131–8139 (1999)CrossRefGoogle Scholar
  19. 19.
    Kurzhöfer, I.: Mehrskalen-Modellierung polykristalliner Ferroelektrika basierend auf diskreten Orientierungsverteilungsfunktionen. PhD thesis, University of Duisburg-Essen (2007)Google Scholar
  20. 20.
    Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.-A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Labusch, M., Schröder, J., Lupascu, D.C.: Multiscale homogenization of magneto-electric porous two-phase composites. In: Zingoni, A. (ed.) Insights and Innovations in Structural Engineering, Mechanics and Computation: Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016). Taylor & Francis Group, London (2016)Google Scholar
  22. 22.
    Lee, J.S., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro–magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mandel, J., Dantu, P.: Conribution à l’étude théorique et expérimentale du coefficient d’élasticité d’un milieu hétérogène mais statistiquement homogène. Annales des Ponts et Chaussées, Paris (1963)Google Scholar
  24. 24.
    Martin, L.W., Chu, Y.-H., Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R: Rep. 68(4–6), 89–133 (2010). ISSN 0927-796XCrossRefGoogle Scholar
  25. 25.
    Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Miehe, C., Bayreuther, C.G.: On mutiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int. J. Numer. Methods Eng. 71, 1135–1180 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Miehe, C., Schotte, J., Schröder, J.: Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1–4), 372–382 (1999)CrossRefGoogle Scholar
  28. 28.
    Nan, C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)CrossRefGoogle Scholar
  29. 29.
    Nan, C.-W., Liu, L., Cai, N., Zhai, J., Ye, Y., Lin, Y.H.: A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831–3833 (2002)CrossRefGoogle Scholar
  30. 30.
    Nan, C.-W., Bichurin, M.I., Dong, Shuxiang, Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)CrossRefGoogle Scholar
  31. 31.
    Naveed-Ul-Haq, M., Shvartsman, V.V., Trivedi, H., Salamon, S., Webers, S., Wende, H., Hagemann, U., Schröder, J., Lupascu, D.C.: Strong converse magnetoelectric effect in \(\text{(Ba, } \text{ Ca)(Zr, } \text{ Ti)O }_3\)\(\text{ NiFe }_2\text{ O }_4\) multiferroics: a relationship between phase-connectivity and interface coupling. Acta Mater. 144, 305–313 (2018)CrossRefGoogle Scholar
  32. 32.
    Priya, S., Islam, R., Dong, S.X., Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 147–164 (2007)Google Scholar
  33. 33.
    Rado, G.T., Ferrari, J.M., Maisch, W.G.: Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed \(\text{ TbPO }_4\). Phys. Rev. B 29, 4041–4048 (1984)CrossRefGoogle Scholar
  34. 34.
    Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007). ISSN 1476-1122CrossRefGoogle Scholar
  35. 35.
    Rivera, J.-P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite. Ferroelectrics 161, 165–180 (1994a)CrossRefGoogle Scholar
  36. 36.
    Rivera, J.-P.: The linear magnetoelectric effect in \(\text{ licopo }_4\) revisited. Ferroelectrics 161, 147–164 (1994b)CrossRefGoogle Scholar
  37. 37.
    Rivera, J.-P., Schmid, H.: On the birefringence of magnetoelectric \(\text{ BiFeO }_3\). Ferroelectrics 204, 23–33 (1997)CrossRefGoogle Scholar
  38. 38.
    Ryu, J., Carazo, A Vázquez, Uchino, K., Kim, H.-E.: Piezoelectric and magnetoelectric properties of lead zirconate titanate/ni-ferrite particulate composites. J. Electroceram. 7, 17–24 (2001)CrossRefGoogle Scholar
  39. 39.
    Ryu, J., Priya, S., Uchino, K., Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)CrossRefGoogle Scholar
  40. 40.
    Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRefGoogle Scholar
  41. 41.
    Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F.M.F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields. Nat. Commun. 4, 1–8 (2013)CrossRefGoogle Scholar
  42. 42.
    Schröder, J.: Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Instabilitäten. Habilitation, Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart (2000)Google Scholar
  43. 43.
    Schröder, J.: Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput. Mater. Sci. 46(3), 595–599 (2009)CrossRefGoogle Scholar
  44. 44.
    Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch. Appl. Mech. 73, 533–552 (2004)CrossRefzbMATHGoogle Scholar
  45. 45.
    Schröder, J., Labusch, M., Keip, M.-A., Kiefer, B., Brands, D., Lupascu, D.C.: Computation of non-linear magneto-electric product properties of 0–3 composites. GAMM-Mitteilungen 38(1), 1–8 (2015)MathSciNetGoogle Scholar
  46. 46.
    Schröder, J., Labusch, M., Keip, M.-A.: Algorithmic two-scale transition for magneto–electro-mechanically coupled problems - \(\text{ FE }^2\)-scheme: localization and homogenization. Comput. Methods Appl. Mech. Eng. 302, 253–280 (2016)CrossRefGoogle Scholar
  47. 47.
    Shvartsman, V.V., Alawneh, F., Borisov, P., Kozodaev, D., Lupascu, D.C.: Converse magnetoelectric effect in \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) composites with a core-shell structure. Smart Mater. Struct. 20, 075006 (2011)CrossRefGoogle Scholar
  48. 48.
    Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)CrossRefGoogle Scholar
  49. 49.
    Srinivasan, G.: Magnetoelectric composites. Ann. Rev. Mater. Res. 40, 1–26 (2010)CrossRefGoogle Scholar
  50. 50.
    Van Den Boomgaard, J., Born, R.A.J.: A sintered magnetoelectric composite material \(\text{ BaTiO }_3\)\(\text{ Ni(Co,Mn) }\) \(\text{ Fe }_2\text{ O }_4\). J. Mater. Sci. 13, 1538–1548 (1978)CrossRefGoogle Scholar
  51. 51.
    Van den Boomgaard, J., Van Run, A.M.J.G., Van Suchtelen, J.: Magnetoelectricity in piezoelectric–magnetostrictive composites. Ferroelectrics 10, 295–298 (1976)CrossRefGoogle Scholar
  52. 52.
    Van den Boomgard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)CrossRefGoogle Scholar
  53. 53.
    Van Run, A.M.J.G., Terrell, D.R., Scholing, J.H.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1710–1714 (1974)CrossRefGoogle Scholar
  54. 54.
    van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)Google Scholar
  55. 55.
    Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)CrossRefGoogle Scholar
  56. 56.
    Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. Nat. Asia-Pac. Asia Mater. 2, 61–68 (2010)Google Scholar
  57. 57.
    Ye, Z.-G., Rivera, J.-P., Schmid, H., Haida, M., Kohn, K.: Magnetoelectric effect and magnetic torque of chromium chlorine boracite \(\text{ Cr }_3{\text{ B }}_7{\text{ O }}_{13}\text{ Cl }\). Ferroelectrics 161, 99–110 (1994)CrossRefGoogle Scholar
  58. 58.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput. Methods Appl. Mech. Eng. 199, 3250–3269 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthias Labusch
    • 1
    Email author
  • Jörg Schröder
    • 1
  • Doru C. Lupascu
    • 2
  1. 1.Institute of MechanicsUniversity of Duisburg-EssenEssenGermany
  2. 2.Institute for Materials Science and Center for Nanointegration (CENIDE)University of Duisburg-EssenEssenGermany

Personalised recommendations