Skip to main content
Log in

Material point method for crack propagation in anisotropic media: a phase field approach

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A novel phase field formulation implemented within a material point method setting is developed to address brittle fracture simulation in anisotropic media. The case of strong anisotropy in the crack surface energy is treated by considering an appropriate variational, i.e. phase field approach. Material point method is utilized to efficiently treat the resulting coupled governing equations. The brittle fracture governing equations are defined at a set of Lagrangian material points and subsequently interpolated at the nodes of a fixed Eulerian mesh where solution is performed. As a result, the quality of the solution does not depend on the quality of the underlying finite element mesh and is relieved from mesh distortion errors. The efficiency and validity of the proposed method are assessed through a set of benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ambati, M., Kruse, R., De Lorenzis, L.: A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57(1), 149–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandara, S., Soga, K.: Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 63, 199–214 (2015)

    Article  Google Scholar 

  4. Bardenhagen, S., Kober, E.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5(6), 477–495 (2004)

    Google Scholar 

  5. Bardenhagen, S.G., Nairn, J.A., Lu, H.: Simulation of dynamic fracture with the material point method using a mixed J-integral and cohesive law approach. Int. J. Fract. 170(1), 49–66 (2011)

    Article  MATH  Google Scholar 

  6. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River, NJ (2007)

    MATH  Google Scholar 

  7. Batra, R., Zhang, G.: Search algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method. Comput. Mech. 40(3), 531–546 (2007)

    Article  MATH  Google Scholar 

  8. Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)

    Article  Google Scholar 

  9. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borden, M.J., Hughes, T.J., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clayton, J., Knap, J.: Phase field modeling and simulation of coupled fracture and twinning in single crystals and polycrystals. Comput. Methods Appl. Mech. Eng. 312, 447–467 (2016)

    Article  MathSciNet  Google Scholar 

  13. Daphalapurkar, N.P., Lu, H., Coker, D., Komanduri, R.: Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method. Int. J. Fract. 143(1), 79–102 (2007)

    Article  MATH  Google Scholar 

  14. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  Google Scholar 

  16. Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput. Methods Appl. Mech. Eng. 312, 542–566 (2016)

    Article  MathSciNet  Google Scholar 

  17. Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Numer. Methods Eng. 109(7), 1013–1044 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hughes, T., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. 37(15), 2502–2522 (2013)

    Article  Google Scholar 

  20. Kakouris, E.G., Triantafyllou, S.P.: Phase-field material point method for brittle fracture. Int. J. Numer. Methods Eng. (2017). doi:10.1002/nme.5580

    Google Scholar 

  21. Li, B., Peco, C., Milln, D., Arias, I., Arroyo, M.: Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int. J. Numer. Methods Eng. 102(3–4), 711–727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, T., Marigo, J.J., Guilbaud, D., Potapov, S.: Gradient damage modeling of brittle fracture in an explicit dynamics context. Int. J. Numer. Methods Eng. 108(11), 1381–1405 (2016)

    Article  MathSciNet  Google Scholar 

  23. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)

    Article  Google Scholar 

  26. Nairn, J.A.: Material point method calculations with explicit cracks. Comput. Model. Eng. Sci. 4(6), 649–664 (2003)

    MATH  Google Scholar 

  27. Nairn, J.A., Hammerquist, C., Aimene, Y.E.: Numerical implementation of anisotropic damage mechanics. Int. J. Numer. Methods Eng. (2017). doi:10.1002/nme.5585

    Google Scholar 

  28. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Methods Eng. 86(12), 1435–1456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sadeghirad, A., Brannon, R., Guilkey, J.: Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Int. J. Numer. Methods Eng. 95(11), 928–952 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sanchez, J., Schreyer, H., Sulsky, D., Wallstedt, P.: Solving quasi-static equations with the material-point method. Int. J. Numer. Methods Eng. 103(1), 60–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Scholtès, L., Donzé, F.V.: Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int. J. Rock Mech. Min. Sci. 52, 18–30 (2012)

    Article  Google Scholar 

  33. Schreyer, H., Sulsky, D., Zhou, S.J.: Modeling delamination as a strong discontinuity with the material point method. Comput. Methods Appl. Mech. Eng. 191(23–24), 2483–2507 (2002)

    Article  MATH  Google Scholar 

  34. Shanthraj, P., Svendsen, B., Sharma, L., Roters, F., Raabe, D.: Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J. Mech. Phys. Solids 99, 19–34 (2017)

    Article  MathSciNet  Google Scholar 

  35. Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Methods Eng. 76(6), 922–948 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Steffen, M., Wallstedt, P.M., Guilkey, J., Kirby, R., Berzins, M.: Examination and analysis of implementation choices within the material point method (MPM). Comput. Model. Eng. Sci. 31(2), 107–127 (2008)

    Google Scholar 

  37. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sulsky, D., Kaul, A.: Implicit dynamics in the material-point method. Comput. Methods Appl. Mech. Eng. 193(1214), 1137–1170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sulsky, D., Schreyer, L.: MPM simulation of dynamic material failure with a decohesion constitutive model. Eur. J. Mech. A/Solids 23(3), 423–445 (2004)

    Article  MATH  Google Scholar 

  40. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  41. Yang, P., Gan, Y., Zhang, X., Chen, Z., Qi, W., Liu, P.: Improved decohesion modeling with the material point method for simulating crack evolution. Int. J. Fract. 186(1), 177–184 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper has been financed by the University of Nottingham through the Dean of Engineering Prize, a scheme for pump priming support for early-career academic staff. The authors are grateful to the University of Nottingham for access to its high-performance computing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Triantafyllou.

Appendices

Appendix A: Variational approach of the anisotropic phase field model

In the energy balance equation (9) the rate of the kinetic energy is evaluated as

$$\begin{aligned} \dot{\mathcal {K}} \left( \dot{\mathbf {u}} \right) = \frac{\hbox {d}}{\hbox {d}t} \int \limits _{\varOmega }\frac{1}{2} \rho |\dot{\mathbf {u}}|^{2} \hbox {d}{\varOmega }= \int \limits _{\varOmega }\left( \left[ \rho \ddot{\mathbf {u}} \right] \cdot \dot{\mathbf {u}} \right) \hbox {d}{\varOmega }. \end{aligned}$$
(61)

Similarly, the rate of the external work is expressed as

$$\begin{aligned} \dot{\mathcal {W}}^{ext} \left( \dot{\mathbf {u}} \right) = \int _{\partial {\varOmega }_{\bar{t}}} ( \varvec{\bar{t}} \cdot \dot{\mathbf {u}}) \,\hbox {d} \partial {\varOmega }_{\bar{t}} + \int _{\varOmega }(\varvec{b} \cdot \dot{\mathbf {u}}) \,\hbox {d} {\varOmega } \end{aligned}$$
(62)

and the rate of the internal work is defined accordingly as

$$\begin{aligned} \dot{\mathcal {W}}^{int} \left( \dot{\mathbf {u}},\dot{c},\nabla \dot{c} \right) = \frac{\hbox {d} {\varPsi }_{pot}}{\hbox {d}t} = \frac{\hbox {d}}{\hbox {d}t} \int \limits _{\varOmega }\left( \psi _{el} + \bar{\mathcal {G}}_{c} \mathcal {Z}_{c,Anis} \right) \hbox {d}{\varOmega }. \end{aligned}$$
(63)

Applying the divergence theorem in Eq. (63), the rate of the internal work \(\dot{\mathcal {W}}^{int} \left( \dot{\mathbf {u}},\dot{c},\nabla \dot{c} \right) \) assumes the following form

$$\begin{aligned} \dot{\mathcal {W}}^{int} \left( \dot{\mathbf {u}},\dot{c},\nabla \dot{c} \right) = \mathcal {B}_1 + \mathcal {B}_2 + \mathcal {B}_3 + \mathcal {B}_4 , \end{aligned}$$
(64)

where the components \(B_i\), \(i=1\dots 4\), assume the following expressions

$$\begin{aligned} \mathcal {B}_1= & {} \frac{\hbox {d}}{\hbox {d}t} \int \limits _{\varOmega }\psi _{el} \hbox {d}{\varOmega }\nonumber \\= & {} \int _{\partial {\varOmega }} \left( \left[ \varvec{\sigma } \varvec{n} \right] \cdot \dot{\mathbf {u}} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \nabla \cdot \varvec{\sigma } \right] \cdot \dot{\mathbf {u}} \right) \,\hbox {d} {\varOmega }+ \int \limits _{\varOmega }\left( \psi _{el_c} \dot{c} \right) \,\hbox {d} {\varOmega }; \end{aligned}$$
(65)
$$\begin{aligned} \mathcal {B}_2= & {} \frac{\hbox {d}}{\hbox {d}t} \int \limits _{\varOmega }\left( \bar{\mathcal {G}}_{c} \left[ \frac{{{{\left( {c - 1} \right) }^2}}}{{4{l_0}}} \right] \right) \hbox {d}{\varOmega }= \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} \frac{ \left( c-1 \right) }{2{l_0}} \right] \dot{c} \right) \,\hbox {d} {\varOmega }; \end{aligned}$$
(66)
$$\begin{aligned} \mathcal {B}_3= & {} \frac{\hbox {d}}{\hbox {d}t} \int \limits _{\varOmega }\left( \bar{\mathcal {G}}_{c} \left[ {l_0} | \nabla c |^2 \right] \right) \,\hbox {d} {\varOmega }\nonumber \\= & {} \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0 2 \nabla c \right] \cdot \varvec{n} \dot{c} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0 2 {\varDelta }c \right] \dot{c} \right) \,\hbox {d} {\varOmega }; \end{aligned}$$
(67)

and

$$\begin{aligned} \begin{aligned} \mathcal {B}_4&= \frac{\hbox {d}}{\hbox {d}t} \int \limits _{\varOmega }\left( \bar{\mathcal {G}}_{c} \left[ l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \right] \right) \,\hbox {d} {\varOmega }\\&= \int \limits _{\varOmega }\left( \bar{\mathcal {G}}_{c} \left[ l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) \right] \right) \,\hbox {d} {\varOmega }\\&=\int \limits _{\varOmega }\left( \bar{\mathcal {G}}_{c} \left[ l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \right) \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} + \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) \right) \right] \right) \,\hbox {d} {\varOmega }\\ {}&= \mathcal {T}_1 + \mathcal {T}_2 , \end{aligned} \end{aligned}$$
(68)

respectively, where

$$\begin{aligned} \mathcal {T}_1=\int \limits _{\varOmega }\left( \bar{\mathcal {G}}_{c} \left[ l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \right) \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) \right] \right) \,\hbox {d} {\varOmega }\end{aligned}$$
(69)

and

$$\begin{aligned} \mathcal {T}_2=\int \limits _{\varOmega }\left( \bar{\mathcal {G}}_{c} \left[ l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) \right) \right] \right) \,\hbox {d} {\varOmega }\end{aligned}$$
(70)

Components \(\mathcal {T}_1\) and \(\mathcal {T}_2\) are further expanded employing the divergence theorem into

$$\begin{aligned} \begin{aligned} \mathcal {T}_1&= \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{i} } \right) \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{i} } \right) \frac{\partial ^3 c}{\partial x_{j} \partial x_{k} \partial x_{l}} \right) \right] \right) \,\hbox {d} {\varOmega }\\ {}&= \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{i} } \right) \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }\\ {}&\quad - \left( \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d} c}{\hbox {d}t} \frac{\partial ^3 c}{\partial x_{j} \partial x_{k} \partial x_{l}} \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d} c}{\hbox {d}t} \frac{\partial ^4 c}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} \right) \right] \right) \,\hbox {d} {\varOmega }\right) \\ {}&= \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{i} } \right) \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }\\&\quad - \left( \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^3 c}{\partial x_{j} \partial x_{k} \partial x_{l}} \right) \right] \cdot \varvec{n} \dot{c} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^4 c}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} \right) \right] \dot{c} \right) \,\hbox {d} {\varOmega }\right) \end{aligned} \end{aligned}$$
(71)

and

$$\begin{aligned} \begin{aligned} \mathcal {T}_2&=\int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{l} } \right) \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^3 c}{\partial x_{i} \partial x_{j} \partial x_{k}} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{l} } \right) \right) \right] \right) \,\hbox {d} {\varOmega }\\&= \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{l} } \right) \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }\\&\quad - \left( \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^3 c}{\partial x_{i} \partial x_{j} \partial x_{k}} \frac{\hbox {d} c}{\hbox {d}t} \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^4 c}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} \frac{\hbox {d} c}{\hbox {d}t} \right) \right] \right) \,\hbox {d} {\varOmega }\right) \\&=\int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{l} } \right) \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }\\&\quad - \left( \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^3 c}{\partial x_{i} \partial x_{j} \partial x_{k}} \right) \right] \cdot \varvec{n}\dot{c} \right) \,\hbox {d} \partial {\varOmega }- \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^4 c}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} \right) \right] \dot{c} \right) \,\hbox {d} {\varOmega }\right) , \end{aligned} \end{aligned}$$
(72)

respectively.

Substituting Eqs. (71) and (72) in Eq. (68) the following expression is derived for \(\mathcal {B}_4\)

$$\begin{aligned} \begin{aligned} \mathcal {B}_4&= \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{i} } \right) \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right) + \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\hbox {d}}{\hbox {d}t} \left( \frac{\partial c}{\partial x_{l} } \right) \right) \right] \cdot \varvec{n} \right) \,\hbox {d} \partial {\varOmega }\\&\quad - \int _{\partial {\varOmega }} \left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^3 c}{\partial x_{j} \partial x_{k} \partial x_{l}} \right) + \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^3 c}{\partial x_{i} \partial x_{j} \partial x_{k}} \right) \right] \cdot \varvec{n} \dot{c} \right) \,\hbox {d} \partial {\varOmega }\\&\quad + 2 \int \limits _{\varOmega }\left( \left[ \bar{\mathcal {G}}_{c} l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \left( \frac{\partial ^4 c}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} \right) \right] \dot{c} \right) \,\hbox {d} {\varOmega }. \end{aligned} \end{aligned}$$
(73)

Substituting Eq. (73) in the energy balance equation (9) expression (14) is finally established.

Appendix B: Transformation of surface energy density to polar coordinates

The surface energy density and their corresponding reciprocal expression polar plots are evaluated according to the methodology introduced in [21]. In this, the Cartesian coordinate system \(\mathbf {x}\left( x_1 , x_2 \right) \) is transformed to \(\mathbf {x}_{\theta } \left( {x}_{1_{\theta }} , {x}_{2_{\theta }} \right) \) where the \({x}_{1_{\theta }}\) axis is defined along the crack path \({\varGamma }\) and \({x}_{2_{\theta }}\) axis is the axis normal to the crack interface as shown in Fig. 20. Angle \(\theta \) is the counterclockwise angle between \({x}_{1}\) axis and \({x}_{1_{\theta }}\).

Fig. 20
figure 20

Coordinate system transformation

Thus, coordinate transformation from \(\mathbf {x}\left( x_1 , x_2 \right) \) to \(\mathbf {x}_{\theta } \left( {x}_{1_{\theta }}, {x}_{2_{\theta }} \right) \) is performed through the transformation equation (74)

$$\begin{aligned} \left\{ \begin{array}{r} x_{1_{\theta }} \\ x_{2_{\theta }} \\ \end{array} \right\} = \begin{bmatrix} \cos (\theta )&-\sin (\theta ) \\ \sin (\theta )&\cos (\theta ) \\ \end{bmatrix} \left\{ \begin{array}{r} x_{1} \\ x_{2} \\ \end{array} \right\} = \mathbf {x}_{\theta } = \mathbf {R}_{\theta } \mathbf {x} \end{aligned}$$
(74)

with the inverse transformation defined as

$$\begin{aligned} \left\{ \begin{array}{r} x_{1} \\ x_{2} \\ \end{array} \right\} = \begin{bmatrix} \cos (\theta )&\sin (\theta ) \\ -\sin (\theta )&\cos (\theta ) \\ \end{bmatrix} \left\{ \begin{array}{r} x_{1_{\theta }} \\ x_{2_{\theta }} \\ \end{array} \right\} = \mathbf {x} = \mathbf {R}_{\theta }^{T} \mathbf {x}_{\theta } . \end{aligned}$$
(75)

Assuming that \(c \left( \mathbf {x} \left( \mathbf {x}_{\theta } \right) \right) \approx c \left( \mathbf {x} \left( x_{2_{\theta }} \right) \right) \) and applying the chain rule, the phase field first spatial derivatives are expressed as

$$\begin{aligned} \frac{\partial c}{\partial x_1} = \frac{\partial c}{\partial x_{1_{\theta }}} \frac{\partial x_{1_{\theta }}}{\partial x_1} + \frac{\partial c}{\partial x_{2_{\theta }}} \frac{\partial x_{2_{\theta }}}{\partial x_1} \approx \frac{\partial c}{\partial x_{2_{\theta }}} \frac{\partial x_{2_{\theta }}}{\partial x_1} = \frac{\partial c}{\partial x_{2_{\theta }}} \sin (\theta ) \end{aligned}$$
(76)

and

$$\begin{aligned} \frac{\partial c}{\partial x_2} = \frac{\partial c}{\partial x_{1_{\theta }}} \frac{\partial x_{1_{\theta }}}{\partial x_2} + \frac{\partial c}{\partial x_{2_{\theta }}} \frac{\partial x_{2_{\theta }}}{\partial x_2} \approx \frac{\partial c}{\partial x_{2_{\theta }}} \frac{\partial x_{2_{\theta }}}{\partial x_2} = \frac{\partial c}{\partial x_{2_{\theta }}} \cos (\theta ) , \end{aligned}$$
(77)

respectively. Similarly, the second spatial derivatives are expressed as

$$\begin{aligned} \frac{\partial ^2 c}{\partial {x_1}^2}= & {} \frac{\partial }{\partial {x_1}} \left( \frac{\partial c}{\partial {x_1}} \right) = \frac{\partial }{\partial x_{1_{\theta }}} \left( \frac{\partial c}{\partial {x_1}} \right) \frac{\partial x_{1_{\theta }}}{\partial x_1} + \frac{\partial }{\partial x_{2_{\theta }}} \left( \frac{\partial c}{\partial {x_1}} \right) \frac{\partial x_{2_{\theta }}}{\partial x_1} \nonumber \\\approx & {} \frac{\partial }{\partial x_{2_{\theta }}} \left( \frac{\partial c}{\partial {x_1}} \right) \frac{\partial x_{2_{\theta }}}{\partial x_1} = \frac{\partial ^2 c}{\partial x_{2_{\theta }}^{2}} \sin ^{2}(\theta ) \end{aligned}$$
(78)
$$\begin{aligned} \frac{\partial ^2 c}{\partial {x_2}^2}= & {} \frac{\partial }{\partial {x_2}} \left( \frac{\partial c}{\partial {x_2}} \right) = \frac{\partial }{\partial x_{1_{\theta }}} \left( \frac{\partial c}{\partial {x_2}} \right) \frac{\partial x_{1_{\theta }}}{\partial x_2} + \frac{\partial }{\partial x_{2_{\theta }}} \left( \frac{\partial c}{\partial {x_2}} \right) \frac{\partial x_{2_{\theta }}}{\partial x_2} \nonumber \\\approx & {} \frac{\partial }{\partial x_{2_{\theta }}} \left( \frac{\partial c}{\partial {x_2}} \right) \frac{\partial x_{2_{\theta }}}{\partial x_2} = \frac{\partial ^2 c}{\partial x_{2_{\theta }}^{2}} \cos ^{2}(\theta ) \end{aligned}$$
(79)

and

$$\begin{aligned} \begin{aligned} \frac{\partial ^2 c}{\partial {x_1} \partial {x_2}}&= \frac{\partial }{\partial {x_1}} \left( \frac{\partial c}{\partial {x_2}} \right) = \frac{\partial }{\partial x_{1_{\theta }}} \left( \frac{\partial c}{\partial {x_2}} \right) \frac{\partial x_{1_{\theta }}}{\partial x_1} + \frac{\partial }{\partial x_{2_{\theta }}} \left( \frac{\partial c}{\partial {x_2}} \right) \frac{\partial x_{2_{\theta }}}{\partial x_1} \\&\approx \frac{\partial }{\partial x_{2_{\theta }}} \left( \frac{\partial c}{\partial {x_2}} \right) \frac{\partial x_{2_{\theta }}}{\partial x_1} = \frac{\partial ^2 c}{\partial x_{2_{\theta }}^{2}} \cos (\theta ) \sin (\theta ) \approx \frac{\partial ^2 c}{\partial {x_2} \partial {x_1}}, \end{aligned} \end{aligned}$$
(80)

respectively. Higher-order spatial derivatives are defined accordingly as

$$\begin{aligned} \frac{\partial ^3 c}{\partial {x_1}^3} \approx \frac{\partial ^3 c}{\partial x_{2_{\theta }}^{3}} \sin ^{3}(\theta ) \qquad \hbox {and}\qquad \frac{\partial ^3 c}{\partial {x_2}^3} \approx \frac{\partial ^3 c}{\partial x_{2_{\theta }}^{3}} \cos ^{3}(\theta ) \end{aligned}$$
(81)

and

$$\begin{aligned} \begin{aligned}&\frac{\partial ^4 c}{\partial {x_1}^4} \approx \frac{\partial ^4 c}{\partial x_{2_{\theta }}^{4}} \sin ^{4}(\theta ){,}\quad \frac{\partial ^4 c}{\partial {x_2}^4} \approx \frac{\partial ^4 c}{\partial x_{2_{\theta }}^{4}} \cos ^{4}(\theta ){,}\quad \frac{\partial ^4 c}{\partial {x_1}^2 \partial {x_2}^2} \approx \frac{\partial ^4 c}{\partial x_{2_{\theta }}^{4}} \cos ^{2}(\theta ) \sin ^{2}(\theta ) \\&\frac{\partial ^4 c}{\partial {x_1} \partial {x_2}^3} \approx \frac{\partial ^4 c}{\partial x_{2_{\theta }}^{4}} \cos ^{3}(\theta ) \sin (\theta ){,}\quad \frac{\partial ^4 c}{\partial {x_2} \partial {x_1}^3} \approx \frac{\partial ^4 c}{\partial x_{2_{\theta }}^{4}} \sin ^{3}(\theta ) \cos (\theta ). \end{aligned} \end{aligned}$$
(82)

Employing Eqs. (76)–(82), the functional \(\mathcal {Z}_{c,Anis}\) of Eq. (4) is expressed in polar coordinates as

$$\begin{aligned} \begin{aligned} \mathcal {Z}_{c,Anis}&= \left[ {\frac{{{{\left( {c - 1} \right) }^2}}}{{4{l_0}}} + {l_0} | \nabla c |^2 } + l_0^{3} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \frac{\partial ^2 c}{\partial x_{i} \partial x_{j}} \frac{\partial ^2 c}{\partial x_{k} \partial x_{l}} \right] \\&\approx \left[ \frac{{{{\left( {c - 1} \right) }^2}}}{{4{l_0}}} + {l_0} \left( \frac{\partial c}{\partial x_{2_{\theta }}} \right) ^{2} + l_0^{3} \gamma _{\theta } \left( \frac{\partial ^{2} c}{\partial x_{2_{\theta }}^{2}} \right) ^{2} \right] , \end{aligned} \end{aligned}$$
(83)

where

$$\begin{aligned} \begin{aligned} \gamma _{\theta }&= \gamma _{1111} \sin ^{4}(\theta ) + \gamma _{2222} \cos ^{4}(\theta ) + \gamma _{1212} \cos ^{2}(\theta ) \sin ^{2}(\theta ) \\&\quad +2 \gamma _{1122} \cos ^{2}(\theta ) \sin ^{2}(\theta ) + 2 \gamma _{1112} \cos (\theta ) \sin ^{3}(\theta ) \\&\quad + 2 \gamma _{2212} \sin (\theta ) \cos ^{3}(\theta ). \end{aligned} \end{aligned}$$
(84)

Furthermore, the Euler–Lagrange equation is rewritten in the form

$$\begin{aligned} c - 1 - 4l_0^{2} {\varDelta }c + 4 l_0^{4} \sum _{\begin{array}{c} ijkl \end{array}} \gamma _{ijkl} \frac{\partial ^4 c}{\partial x_{i} \partial x_{j} \partial x_{k} \partial x_{l}} = 0 \Rightarrow c - 1 - 4l_0^{2} \left( \frac{\partial ^2 c}{\partial x_{2_{\theta }}^{2}} \right) + 4 l_0^{4} \gamma _{\theta } \left( \frac{\partial ^4 c}{\partial x_{2_{\theta }}^{4}} \right) = 0. \end{aligned}$$
(85)

Equation (85) can then be numerically solved subject to the following boundary conditions, i.e.

$$\begin{aligned} \begin{aligned}&c \left( 0 \right) = 0\\&\frac{\partial c \left( 0 \right) }{\partial x_{2_{\theta }}} = 0\\&\frac{\partial c \left( \pm \infty \right) }{x_{2_{\theta }}} \left( \approx \frac{\partial c \left( \pm x_{lb} \right) }{\partial x_{2_{\theta }}} \right) = 0\\&\frac{\partial ^{2} c \left( \pm \infty \right) }{\partial x_{2_{\theta }}^{2}} \left( \approx \frac{\partial ^{2} c \left( \pm x_{lb} \right) }{\partial x_{2_{\theta }}^{2}} \right) = 0, \end{aligned} \end{aligned}$$
(86)

where \(x_{lb}\) is the distance from the boundary, assuming that \(x_{lb}=20 l_0\). Finally, the surface energy density is numerically evaluated as

$$\begin{aligned} \begin{aligned} \mathcal {G}_{c} \left( \theta \right) = \int _{-\infty }^{+\infty } \bar{\mathcal {G}}_{c} \mathcal {Z}_{c,Anis} \hbox {d}x_{2_{\theta }} \approx \int _{-x_{lb}}^{+x_{lb}} \bar{\mathcal {G}}_{c} \mathcal {Z}_{c,Anis} \hbox {d}x_{2_{\theta }}. \end{aligned} \end{aligned}$$
(87)

The maximum and minimum values of \(\mathcal {G}_{c} \left( \theta \right) \) for \(\theta \in \left[ 0,2\pi \right] \) define the \(\mathcal {G}_{c_{\max }}\) and \(\mathcal {G}_{c_{\min }}\), respectively. The polar plot of surface energy density \(\mathcal {G}_{c} \left( \theta \right) \) can be rotated by angle \(\phi \) through relation (88) below

$$\begin{aligned} \varvec{\gamma }_{\phi } = \varvec{Q}_{\phi } \varvec{\gamma } \varvec{Q}_{\phi }^{T}. \end{aligned}$$
(88)

The rotation matrix \(\varvec{Q}_{\phi }\) is defined as

$$\begin{aligned} \varvec{Q}_{\phi } = \begin{bmatrix} c^2&s^2&-2 c s \\ s^2&c^2&2 c s \\ c s&-c s&c^2 - s^2 \\ \end{bmatrix} , \end{aligned}$$
(89)

where \(c=\cos \left( \phi \right) \) and \(s=\sin \left( \phi \right) \). The angle \(\phi \) goes clockwise. In the cases of cubic and orthotropic symmetries the fourth-order tensor \(\varvec{\gamma }\) is expressed, in global axes, as

$$\begin{aligned} \varvec{\gamma } = \begin{bmatrix} \gamma _{1111}&\gamma _{1122}&\gamma _{1112} \\ \gamma _{2211}&\gamma _{2222}&\gamma _{2212} \\ \gamma _{1211}&\gamma _{1222}&\gamma _{1212} \\ \end{bmatrix} = \begin{bmatrix} \gamma _{11}&\gamma _{12}&2\gamma _{14} \\ \gamma _{12}&\gamma _{22}&2\gamma _{24} \\ 2\gamma _{14}&2\gamma _{24}&4\gamma _{44} \\ \end{bmatrix} . \end{aligned}$$
(90)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakouris, E.G., Triantafyllou, S.P. Material point method for crack propagation in anisotropic media: a phase field approach. Arch Appl Mech 88, 287–316 (2018). https://doi.org/10.1007/s00419-017-1272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1272-7

Keywords

Navigation