Advertisement

Archive of Applied Mechanics

, Volume 87, Issue 6, pp 1019–1036 | Cite as

Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves

  • Ekaterina V. Shishkina
  • Serge N. GavrilovEmail author
Original

Abstract

We deal with a new phase nucleation in a phase-transforming bar caused by a collision of two non-stationary waves. We consider an initial stage of dynamical process in the finite bar before the moment of time when the waves emerged due to new phase nucleation reach the ends of the bar. The model of a phase-transforming bar with trilinear stress–strain relation is used. The problem is formulated as a scale-invariant initial value problem with additional restrictions in the form of several inequalities involving the problem parameters. We consider the particular limiting case where the stiffness of a new phase inclusion is much greater than the stiffness of the initial phase and obtain the asymptotic solution in the explicit form. In particular, the domains of existence of the solution in the parameter space are constructed.

Keywords

Phase transitions 1D elastodynamics Asymptotics 

References

  1. 1.
    Abeyaratne, R., Knowles, J.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rat. Mech. Anal. 114(2), 119–154 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abeyaratne, R., Knowles, J.: On a shock-induced martensitic phase transition. J. Appl. Phys. 87(3), 1123–1134 (2000)CrossRefGoogle Scholar
  3. 3.
    Abeyaratne, R., Knowles, J.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  4. 4.
    Balassas, K., Kalpakides, V.: The equilibrium of material forces in a 1d phase transition problem. Comput. Methods Appl. Mech. Eng. 196(17), 2161–2172 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bažant, Z., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Dover, New York (2003)zbMATHGoogle Scholar
  6. 6.
    Bažant, Z., Belytschko, T.: Wave propagation in a strain-softening bar: exact solution. J. Eng. Mech. 111(3), 381–389 (1985)CrossRefGoogle Scholar
  7. 7.
    Belytschko, T., Bažant, Z., Hyun, Y., Chang, T.: Strain-softening materials and finite-element solutions. Comput. Struct. 23(2), 163–180 (1986)CrossRefGoogle Scholar
  8. 8.
    Belytschko, T., Wang, X., Bažant, Z., Hyun, Y.: Transient solutions for one-dimensional problems with strain softening. J. Appl. Mech. 54(3), 513–518 (1987)CrossRefzbMATHGoogle Scholar
  9. 9.
    Berezovski, A., Engelbrecht, J., Maugin, G.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Boettinger, W., Warren, J., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Mater. Res. 32(1), 163 (2002)CrossRefGoogle Scholar
  11. 11.
    Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Conti, S., Schweizer, B.: A sharp-interface limit for a two-well problem in geometrically linear elasticity. Arch. Rat. Mech. Anal. 179(3), 413–452 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. Springer, Berlin (1976)CrossRefzbMATHGoogle Scholar
  14. 14.
    Emel’lyanov, Y., Golyandin, S., Kobelev, N., Kustov, S., Nikanorov, S., Pugachev, G., Sapozhnikov, K., Sinani, A., Soifer, Y., Van Humbeeck, J., De Batist, R.: Influence of high-energy impact actions on the elastic and anelastic properties of martensitic Cu–Al–Ni crystals. J. Alloys Compd. 310(1–2), 324–329 (2000)CrossRefGoogle Scholar
  15. 15.
    Eremeyev, V., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Eremeyev, V., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Escobar, J., Clifton, R.: On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations. Mater. Sci. Eng. A 170(1–2), 125–142 (1993)CrossRefGoogle Scholar
  18. 18.
    Escobar, J., Clifton, R.: Pressure-shear impact-induced phase transformations in Cu-14.44 Al-4.19 Ni single crystals. In: Symposium on Active Materials and Smart Structures: Society of Engineering Science 31st Annual Meeting, pp. 186–197. International Society for Optics and Photonics (1995)Google Scholar
  19. 19.
    Feng, B., Levitas, V.: Plastic flows and strain-induced alpha to omega phase transformation in zirconium during compression in a diamond anvil cell: finite element simulations. Mater. Sci. Eng. A 680, 130–140 (2017)CrossRefGoogle Scholar
  20. 20.
    Freidin, A., Sharipova, L.: On a model of heterogenous deformation of elastic bodies by the mechanism of multiple appearance of new phase layers. Meccanica 41(3), 321–339 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gavrilov, S.: Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. Z. Angew. Math. Mech. 87(2), 117–127 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gavrilov, S., Shishkina, E.: On stretching of a bar capable of undergoing phase transitions. Contin. Mech. Thermodyn. 22, 299–316 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gavrilov, S., Shishkina, E.: New-phase nucleation due to the collision of two nonstationary waves. Dokl. Phys. 59(12), 577–581 (2014)CrossRefGoogle Scholar
  24. 24.
    Gavrilov, S., Shishkina, E.: Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations. In: Days on Diffraction (DD), 2015, pp. 96–101. IEEE (2015). doi: 10.1109/DD.2015.7354840
  25. 25.
    Gavrilov, S., Shishkina, E.: A strain-softening bar revisited. Z. Angew. Math. Mech. 95(12), 1521–1529 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gurtin, M.: Configurational Forces As Basic Concepts of Continuum Physics. Springer, Berlin (2000)zbMATHGoogle Scholar
  27. 27.
    Honeycutt, J., Andersen, H.: Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91(19), 4950–4963 (1987)CrossRefGoogle Scholar
  28. 28.
    Javanbakht, M., Levitas, V.: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys. Rev. B 94(21), 214,104 (2016)CrossRefGoogle Scholar
  29. 29.
    Kienzler, R., Herrmann, G.: Mechanics in Material Space: With Applications in Defect and Fracture Mechanics. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  30. 30.
    Knowles, J.: Stress-induced phase transitions in elastic solids. Comput. Mech. 22(6), 429–436 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Knowles, J., Sternberg, E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 8(4), 329–379 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lagoudas, D. (ed.): Shape Memory Alloys. Modeling and Engineering Applications. Springer, Berlin (2008)zbMATHGoogle Scholar
  33. 33.
    Lin, J., Pence, T.: Pulse attenuation by kinetically active phase boundary scattering during displacive phase transformations. J. Mech. Phys. Solids 46(7), 1183–1211 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Maugin, G.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)CrossRefzbMATHGoogle Scholar
  35. 35.
    Maugin, G.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. CRC Press, London (2010)CrossRefzbMATHGoogle Scholar
  36. 36.
    Ngan, S.C., Truskinovsky, L.: Thermo-elastic aspects of dynamic nucleation. J. Mech. Phys. Solids 50(6), 1193–1229 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981)CrossRefGoogle Scholar
  38. 38.
    Pence, T.: On the emergence and propagation of a phase boundary in an elastic bar with a suddenly applied end load. J. Elast. 16(1), 3–42 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Rosi, G., Giorgio, I., Eremeyev, V.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z. Angew. Math. Mech. 93(12), 914–927 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Shishkina, E., Gavrilov, S.: A strain-softening bar with rehardening revisited. Math. Mech. Solids 21(2), 137–151 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073,001 (2009)CrossRefGoogle Scholar
  42. 42.
    Truskinovskii, L.: Equilibrium phase interfaces. Sov. Phys. Dokl. 27(7), 551–552 (1982)Google Scholar
  43. 43.
    Truskinovsky, L.: Nucleation and growth in elastodynamics. In: Dynamics of Crystal Surfaces and Interfaces, pp. 185–197. Springer (2002)Google Scholar
  44. 44.
    Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66(2), 533–553 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Yeremeyev, V., Freidin, A., Sharipova, L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute for Problems in Mechanical Engineering RASSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations