Archive of Applied Mechanics

, Volume 86, Issue 1–2, pp 177–188 | Cite as

Analysis of multiple cracking in metal/ceramic composites with lamellar microstructure



Metal/ceramic composites with lamellar microstructures are a novel class of metal-matrix composites produced by infiltration of freeze-cast or ice-templated ceramic preforms with molten aluminium alloy. The cost-effectiveness of production and relatively high ceramic content make such composites attractive to a number of potential applications in the automotive, aerospace and biomedical engineering. A hierarchical lamellar microstructure exhibited by these composites, with randomly orientated domains in which all ceramic and metallic lamellae are parallel to each other, is the result of the ice crystal formation during freeze-casting or ice-templating of preforms from water–ceramic suspensions. In this paper, a single-domain sample of metal/ceramic composite with lamellar microstructure is modelled theoretically using a combination of analytical and computational means. Stress field in the sample containing multiple transverse cracks in the ceramic layer is determined using a modified 2-D shear lag approach and a finite element method. Using finite element modelling, the shear layer thickness is determined and used as input in the analytical model. Degradation of stiffness properties of the sample due to multiple transverse cracking is predicted using the equivalent constraint model.


Metal/ceramic composites Transverse cracking Damage modelling Finite element modelling Analytical modelling 


  1. 1.
    Clyne, T.W.: Comprehensive Composite Materials, Vol. 3: Metal Matrix Composites. Pergamon, Oxford (2000)Google Scholar
  2. 2.
    Evans, A., San Marchi, C., Mortensen, A.: Metal Matrix Composites in Industry: An Introduction and A Survey. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  3. 3.
    Miracle, D.B.: Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)CrossRefGoogle Scholar
  4. 4.
    Chawla, N., Chawla, K.K.: Metal Matrix Composites. Springer, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Mortensen, A., Llorca, J.: Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010)CrossRefGoogle Scholar
  6. 6.
    Fukasawa, T., Ando, M., Ohji, T., Kanzaki, S.: Synthesis of porous Silicon Nitride with unidirectionally aligned channels using freeze-drying process. J. Am. Ceram. Soc. 85, 2151–2155 (2002)CrossRefGoogle Scholar
  7. 7.
    Mattern, A., Hucher, B., Staudenecker, D., Oberacker, R., Nagel, A., Hoffmann, M.J.: Preparation of interpenetrating ceramic–metal composites. J. Eur. Ceram. Soc. 24(12), 3399–3408 (2004)CrossRefGoogle Scholar
  8. 8.
    Deville, S., Saiz, E., Nalla, R.K., Tomsia, A.P.: Freezing as a path to build complex composites. Science 31, 515–518 (2006)CrossRefGoogle Scholar
  9. 9.
    Roy, S., Wanner, A.: Metal/ceramic composites from freeze-cast ceramics preforms: domain structure and elastic properties. Compos. Sci. Technol. 68, 1136–1143 (2008)CrossRefGoogle Scholar
  10. 10.
    Roy, S., Butz, B., Wanner, A.: Damage evolution and domain-level anisotropy in metal ceramics composites exhibiting lamellar microstructures. Acta Mater. 58, 2300–2312 (2010)CrossRefGoogle Scholar
  11. 11.
    Ziegler, T., Neubrand, A., Piat, R.: Multiscale homogenization models for the elastic behaviour of metal/ceramic composites with lamellar domains. Compos. Sci. Technol. 70(4), 664–670 (2010)CrossRefGoogle Scholar
  12. 12.
    Roy, S., Gebert, J.-M., Stasiuk, G., Piat, R., Weidermann, K.A.: Complete determination of elastic moduli of interpenetrating metal/ceramic composites using ultrasonic techniques and micromechanical modelling. Mater. Sci. Eng. A 528, 8226–8235 (2011)CrossRefGoogle Scholar
  13. 13.
    Sinchuk, Y., Roy, S., Gibmeier, J., Piat, R., Wanner, A.: Numerical study of internal load transfer in metal/ceramic composites based on freeze-cast ceramic preforms and experimental validation. Mater. Sci. Eng. A 585, 10–16 (2013)CrossRefGoogle Scholar
  14. 14.
    Launey, M.E., Munch, E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: A novel biomimetic approach to the design of high-performance ceramic metal–composites. J. R. Soc. Interface 7, 741–753 (2010)CrossRefGoogle Scholar
  15. 15.
    Huang, Y., Zhang, H.W., Wu, F.: Multiple cracking in metal–ceramic laminates. Int. J. Solids Struct. 20, 2753–2768 (1994)CrossRefGoogle Scholar
  16. 16.
    Huang, Y., Zhang, H.W.: The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates. Acta Metall. Mater. 43, 1523–1530 (1996)CrossRefGoogle Scholar
  17. 17.
    Shaw, M.C., Clyne, T.W., Cocks, A.C.F., Fleck, N.A., Pateras, S.K.: Cracking patterns in metal–ceramic laminates: effects of plasticity. J. Mech. Phys. Solids 44, 801–821 (1996)CrossRefGoogle Scholar
  18. 18.
    Hwu, K.L., Derby, B.: Fracture of metal/ceramic laminates—I. Transition from single to multiple cracking. Acta Mater. 47, 529–543 (1999)CrossRefGoogle Scholar
  19. 19.
    Hwu, K.L., Derby, B.: Fracture of metal/ceramic laminates—II. Crack growth resistance and toughness. Acta Mater. 47, 545–563 (1999)CrossRefGoogle Scholar
  20. 20.
    Kashtalyan, M., Soutis, S.: Residual stiffness of cracked cross-ply composite laminates under multi-axial in-plane loading. Appl. Compos. Mater. 18, 31–43 (2011)CrossRefGoogle Scholar
  21. 21.
    Katerelos, D.T.G., Kashtalyan, M., Soutis, C., Galiotis, C.: Matrix cracking in polymeric composites laminates: modelling and experiments. Compos. Sci. Technol. 68, 2310–2317 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in \([\pm \theta _m /90_n ]_s \) composite laminates Part 1: In-plane stiffness properties. Composites 23(5), 291–298 (1992)CrossRefGoogle Scholar
  23. 23.
    Kashtalyan, M., Soutis, S.: A study of matrix crack tip delaminations and their influence on composite laminate stiffness. Adv. Compos. Lett. 8, 149–155 (1999)Google Scholar
  24. 24.
    Kashtalyan, M., Soutis, S.: Modelling off-axis ply matrix cracking in continuous fibre-reinforced polymer matrix composite laminates. J. Mater. Sci. 41, 6789–6799 (2006)CrossRefGoogle Scholar
  25. 25.
    Kashtalyan, M., Soutis, S.: Predicting residual stiffness of cracked composite laminates subjected to multi-axial inplane loading. J. Compos. Mater. 47, 2513–2524 (2013)CrossRefGoogle Scholar
  26. 26.
    ABAQUS: Simulia, Providence, RI, USA., Accessed 4 June (2015)
  27. 27.
    Bai, T., Pollard, D.D.: Fracture spacing in layered rocks: A new explanation based on the stress transition. J. Struct. Geol. 22, 43–57 (2000)CrossRefGoogle Scholar
  28. 28.
    Winiarski, B., Guz, I.A.: Plane problem for layered composites with periodic array of interfacial cracks under compressive static loading. Int. J. Fract. 144(2), 113–119 (2007)CrossRefMATHGoogle Scholar
  29. 29.
    Winiarski, B., Guz, I.A.: The effect of cracks interaction in orthotropic layered materials under compressive loading. Philos. Trans. R. Soc. A. 366(1871), 1841–1847 (2008)CrossRefMATHGoogle Scholar
  30. 30.
    Winiarski, B., Guz, I.A.: The effect of fibre volume fraction on the onset of fracture in laminar materials with an array of coplanar interface cracks. Compos. Sci. Technol. 68(12), 2367–2375 (2008)CrossRefGoogle Scholar
  31. 31.
    Winiarski, B., Guz, I.A.: The effect of cracks interaction for transversely isotropic layered material under compressive loading. Finite Elem. Des. 44(4), 197–213 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre for Micro- and Nanomechanics (CEMINACS), School of EngineeringUniversity of AberdeenAberdeenUK
  2. 2.Institute of Engineering MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Faculty of Mathematics and Natural SciencesUniversity of Applied Sciences DarmstadtDarmstadtGermany

Personalised recommendations