Advertisement

Archive of Applied Mechanics

, Volume 86, Issue 1–2, pp 375–401 | Cite as

A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers

  • Philipp Weißgraeber
  • Dominique Leguillon
  • Wilfried BeckerEmail author
Special

Abstract

Crack initiation in brittle materials is not covered by classical fracture mechanics that deals only with the growth of pre-existing cracks. In order to overcome this deficiency, the Finite Fracture Mechanics concept assumes the instantaneous formation of cracks of finite size at initiation. Within this framework, a coupled criterion was proposed at the beginning of the 2000’s requiring two necessary conditions to be fulfilled simultaneously. The first one compares the tensile stress to the tensile strength, while the other uses an energy balance and the material toughness. The present analysis is restricted to the 2D case, and, through a wide list of references, it is shown that this criterion gives predictions in agreement with experiments in various cases of stress concentration, which can be classified in two categories: the singularities, i.e. indefinitely growing stresses at a point, and the non-singular stress raisers. It is applied to different materials and structures: notched specimens, laminates, adhesive joints or embedded inclusions. Of course, a lot of work remains to do in these domains but also in domains that are almost not explored such as fatigue loadings and dynamic loadings as well as a sound 3D extension. Some ideas in these directions are issued before concluding that FFM and the coupled criterion have filled a gap in fracture mechanics.

Keywords

Finite Fracture Mechanics Crack initiation Stress singularity Weak singularity Size effects 

Résumé

L’approche classique de la mécanique de la rupture des matériaux fragiles n’aborde pas les problèmes d’initiation de nouvelles fissures, elle ne traite que la croissance de fissures préexistantes. Afin de surmonter cette déficience, l’approche connue sous la désignation anglo-saxonne de Finite Fracture Mechanics suppose la formation instantanée de fissures de taille finie à l’initiation. Développé dans ce cadre, le critère couplé requiert la vérification simultanée de deux conditions nécessaires : la première compare la contrainte de traction à la résistance en traction du matériau tandis que l’autre utilise une équation de conservation de l’énergie et fait appel à la ténacité. La présente analyse se limite au cas 2D et, à travers une longue liste de références, il est montré que le critère couplé donne, aux points de concentration de contraintes, des prédictions d’amorçage de fissures qui sont en accord avec les expériences. On peut distinguer deux catégories : les singularités, lorsque les contraintes croissent indéfiniment en s’approchant d’un point, et les simples concentrations de contraintes, lorsque celles-ci tout en étant élevées restent bornées. Le critère est appliqué à différents matériaux et structures: éprouvettes entaillées, composites stratifiés, joints adhésifs, inclusions. Bien sûr, beaucoup de travail reste à faire dans ces domaines, mais il existe aussi des sujets qui ne sont pratiquement pas explorés comme la fatigue, les chargements dynamiques ainsi qu’une généralisation aux situations tridimensionnelles. Quelques idées sont émises dans ces directions avant de conclure que la FFM et le critère couplé ont comblé une lacune en mécanique de la rupture.

Zusammenfassung

Die Initiierung von Rissen wird in der klassischen Bruchmechanik nicht umfasst, da sich diese auf die Beschreibung des Verhaltens vorhandener Risse beschränkt. In der Bruchmechanik finiter Risse wird diese Einschränkung durch die Betrachtung der instantanen Entstehung von Rissen endlicher Länge aufgehoben. Im Rahmen dieses Konzeptes wurde ein gekoppeltes Kriterium vorgeschlagen, das eine hinreichende Versagensbedingung in Form zweier gleichzeitig zu erfüllender notwendiger Bedingungen darstellt: eine Bedingung der Festigkeitsmechanik und eine Energiebedingung für den Bruchprozess. Die gegenwärtige Formulierung ist auf zweidimensionale Modelle beschränkt und ist, wie anhand zahlreicher Referenzen dargestellt, geeignet experimentelle Ergebnisse über Versagen an unterschiedlichsten Spannungskonzentratoren korrekt abzubilden. Diese lassen sich klassifizieren in singuläre Spannungskonzentratoren mit lokal unendlich hohen Spannungen und in nicht-singuläre Spannungskonzentratoren mit lokal stark erhöhten aber endlichen Spannungen. Das Kriterium wurde auf verschiedenste Struktursituationen und Materialen angewendet: gekerbte Bauteile, Laminate, Klebverbindungen oder auch Materialeinschlüsse. Jedoch verbleiben weitere unerschlossene Felder für weitere Untersuchungen wie etwa die Betrachtung von zyklischen und dynamischen Lasten oder eine gründliche Erweiterung auf dreidimensionale Risse. Mögliche Ansätze für solche Erweiterungen werden vorgestellt bevor der Schluss gezogen wird, dass die Bruchmechanik finiter Risse mit dem gekoppelten Kriterium eine Lücke in der Bruchmechanik geschlossen hat.

References

  1. 1.
    Abdollahi, A., Arias, I.: Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater. 59(12), 4733–4746 (2011)CrossRefGoogle Scholar
  2. 2.
    Adams, R., Comyn, J., Wake, W.: Structural Adhesive Joints in Engineering. Springer, Berlin (1997)Google Scholar
  3. 3.
    Ahn, B., Curtin, W., Parthasarathy, T., Dutton, R.: Criteria for crack deflection/penetration criteria for fiber-reinforced ceramic matrix composites. Compos. Sci. Technol. 58(11), 1775–1784 (1998)CrossRefGoogle Scholar
  4. 4.
    Ainsworth, R.: The treatment of thermal and residual stresses in fracture assessments. Eng. Fract. Mech. 24(1), 65–76 (1986)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alfano, G., Crisfield, M.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50(7), 1701–1736 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Allix, O., Ladevèze, P.: Interlaminar interface modelling for the prediction of delamination. Compos. Struct. 22(4), 235–242 (1992)CrossRefGoogle Scholar
  7. 7.
    de Almeida, S.M., Hansen, J.S.: Enhanced elastic buckling loads of composite plates with tailored thermal residual stresses. J. Appl. Mech. 64(4), 772–780 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Amiri, F., Millán, D., Shen, Y., Rabczuk, T., Arroyo, M.: Phase-field modeling of fracture in linear thin shells. Theor. Appl. Fract. Mech. 69, 102–109 (2014)CrossRefGoogle Scholar
  9. 9.
    Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2005)Google Scholar
  10. 10.
    Andersons, J., Tarasovs, S., Spārniņš, E.: Finite fracture mechanics analysis of crack onset at a stress concentration in a UD glass/epoxy composite in off-axis tension. Compos. Sci. Technol. 70(9), 1380–1385 (2010)CrossRefGoogle Scholar
  11. 11.
    Aranson, I., Kalatsky, V., Vinokur, V.: Continuum field description of crack propagation. Phys. Rev. Lett. 85(1), 118 (2000)CrossRefGoogle Scholar
  12. 12.
    Arteiro, A., Catalanotti, G., Xavier, J., Camanho, P.: Notched response of non-crimp fabric thin-ply laminates: analysis methods. Compos. Sci. Technol. 88, 165–171 (2013)CrossRefGoogle Scholar
  13. 13.
    Ayatollahi, M., Mirsayar, M.: Kinking angles for interface cracks. Proc. Eng. 10, 325–329 (2011)CrossRefGoogle Scholar
  14. 14.
    Bailey, J., Parvizi, A.: On fibre debonding effects and the mechanism of transverse-ply failure in cross-ply laminates of glass fibre/thermoset composites. J. Mater. Sci. 16(3), 649–659 (1981)CrossRefGoogle Scholar
  15. 15.
    Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7(1), 55–129 (1962)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bažant, Z.: Size effect in blunt fracture: concrete, rock, metal. J. Eng. Mech. 110(4), 518–535 (1984)CrossRefGoogle Scholar
  17. 17.
    Bažant, Z., Planas, J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials, vol. 16. CRC Press, Boca Raton (1997)Google Scholar
  18. 18.
    Bažant, Z., Gettu, R., Kazemi, M.: Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(1), 43–51 (1991)CrossRefGoogle Scholar
  19. 19.
    Bažant, Z.P., Li, Y.N.: Penetration fracture of sea ice plate: simplified analysis and size effect. J. Eng. Mech. 120(6), 1304–1321 (1994)CrossRefGoogle Scholar
  20. 20.
    Beghini, M., Bertini, L., Di Lello, R., Fontanari, V.: A general weight function for inclined cracks at sharp V-notches. Eng. Fract. Mech. 74(4), 602–611 (2007)CrossRefGoogle Scholar
  21. 21.
    Bermejo, R., Torres, Y., Sanchez-Herencia, A., Baudin, C., Anglada, M., Llanes, L.: Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Mater. 54, 4745–4757 (2006)CrossRefGoogle Scholar
  22. 22.
    Bogy, D.: Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J. Appl. Mech. 38, 377 (1971)CrossRefGoogle Scholar
  23. 23.
    Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Broberg, K.B.: Cracks and Fracture. Academic Press, San Diego (1999)Google Scholar
  25. 25.
    Camanho, P., Erçin, G., Catalanotti, G., Mahdi, S., Linde, P.: A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos. A: Appl. Sci. Manuf. 43(8), 1219–1225 (2012)CrossRefGoogle Scholar
  26. 26.
    Camanho, P.P., Maimí, P., Dávila, C.: Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol. 67(13), 2715–2727 (2007)CrossRefGoogle Scholar
  27. 27.
    Campilho, R., Banea, M.D., Neto, J., da Silva, L.F.: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 44, 48–56 (2013)CrossRefGoogle Scholar
  28. 28.
    Carpinteri, A.: Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners. Eng. Fract. Mech. 26(1), 143–155 (1987)CrossRefGoogle Scholar
  29. 29.
    Carpinteri, A., Cornetti, P., Pugno, N., Sapora, A., Taylor, D.: A finite fracture mechanics approach to structures with sharp V-notches. Eng. Fract. Mech. 75(7), 1736–1752 (2008)CrossRefGoogle Scholar
  30. 30.
    Carpinteri, A., Cornetti, P., Pugno, N., Sapora, A.: The problem of the critical angle for edge and center V-notched structures. Eur. J. Mech. A Solids 30(3), 281–285 (2011)zbMATHCrossRefGoogle Scholar
  31. 31.
    Carpinteri, A., Cornetti, P., Sapora, A.: A Finite Fracture Mechanics approach to the asymptotic behaviour of U-notched structures. Fatigue Fract. Eng. Mater. Struct. 35(5), 451–457 (2012)CrossRefGoogle Scholar
  32. 32.
    Carraro, P., Quaresimin, M.: Modelling fibre-matrix debonding under biaxial loading. Compos. A: Appl. Sci. Manuf. 61, 33–42 (2014)CrossRefGoogle Scholar
  33. 33.
    Carrere, N., Martin, E., Leguillon, D.: Comparison between models based on a coupled criterion for the prediction of the failure of adhesively bonded joints. Eng. Fract. Mech. 138, 185–201 (2015)CrossRefGoogle Scholar
  34. 34.
    Catalanotti, G., Camanho, P.: A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates. Compos. Sci. Technol. 76, 69–76 (2013)CrossRefGoogle Scholar
  35. 35.
    Chiaia, B., Cornetti, P., Frigo, B.: Triggering of dry snow slab avalanches: stress versus fracture mechanical approach. Cold Reg. Sci. Technol. 53(2), 170–178 (2008)CrossRefGoogle Scholar
  36. 36.
    Cicero, S., Madrazo, V., Carrascal, I.: Analysis of notch effect in PMMA using the theory of critical distances. Eng. Fract. Mech. 86, 56–72 (2012)CrossRefGoogle Scholar
  37. 37.
    Cook, J., Gordon, J., Evans, C., Marsh, D.: A mechanism for the control of crack propagation in all-brittle systems. Proc. R. Soc. Lond. A Math. Phys. Sci. 282(1391), 508–520 (1964)CrossRefGoogle Scholar
  38. 38.
    Cornetti, P., Pugno, N., Carpinteri, A., Taylor, D.: Finite fracture mechanics: a coupled stress and energy failure criterion. Eng. Fract. Mech. 73(14), 2021–2033 (2006)CrossRefGoogle Scholar
  39. 39.
    Cornetti, P., Mantič, V., Carpinteri, A.: Finite Fracture Mechanics at elastic interfaces. Int. J. Solids Struct. 49(7), 1022–1032 (2012)CrossRefGoogle Scholar
  40. 40.
    Cornetti, P., Sapora, A., Carpinteri, A.: Mode mixity and size effect in V-notched structures. Int. J. Solids Struct. 50(10), 1562–1582 (2013)CrossRefGoogle Scholar
  41. 41.
    Cotterell, B., Rice, J.: Slightly curved or kinked cracks. Int. J. Fract. 16(2), 155–169 (1980)CrossRefGoogle Scholar
  42. 42.
    da Silva, L., Campilho, R.D.: Advances in Numerical Modelling of Adhesive Joints. Springer, Berlin (2012)CrossRefGoogle Scholar
  43. 43.
    da Silva, L., Rodrigues, T., Figueiredo, M., Moura, M.D., Chousal, J.: Effect of adhesive type and thickness on the lap shear strength. J. Adhes. 82(11), 1091–1115 (2006)CrossRefGoogle Scholar
  44. 44.
    da Silva, L., das Neves, P., Adams, R., Spelt, J.: Analytical models of adhesively bonded joints—part I: literature survey. Int. J. Adhes. Adhes. 29(3), 319–330 (2009a)CrossRefGoogle Scholar
  45. 45.
    da Silva, L., das Neves, P., Adams, R., Wang, A., Spelt, J.: Analytical models of adhesively bonded joints—part II: comparative study. Int. J. Adhes. Adhes. 29(3), 331–341 (2009b)CrossRefGoogle Scholar
  46. 46.
    da Silva, L., Öchsner, A., Adams, R.: Handbook of Adhesion Technology. Springer Science & Business Media, Berlin (2011)CrossRefGoogle Scholar
  47. 47.
    Diaz, A.D., Caron, J.F.: Prediction of the onset of mode III delamination in carbon–epoxy laminates. Compos. Struct. 72(4), 438–445 (2006)CrossRefGoogle Scholar
  48. 48.
    Dieringer, R., Becker, W.: A new scaled boundary finite element formulation for the computation of singularity orders at cracks and notches in arbitrarily laminated composites. Compos. Struct. 123, 263–270 (2015)CrossRefGoogle Scholar
  49. 49.
    Dugdale, D.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960a)CrossRefGoogle Scholar
  50. 50.
    Dunn, M.L., Suwito, W., Cunningham, S.: Fracture initiation at sharp notches: correlation using critical stress intensities. Int. J. Solids Struct. 34(29), 3873–3883 (1997a)zbMATHCrossRefGoogle Scholar
  51. 51.
    Dunn, M.L., Suwito, W., Cunningham, S., May, C.W.: Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int. J. Fract. 84(4), 367–381 (1997b)Google Scholar
  52. 52.
    Eastgate, L., Sethna, J.P., Rauscher, M., Cretegny, T., Chen, C.S., Myers, C.: Fracture in mode I using a conserved phase-field model. Phys. Rev. E 65(3), 036,117 (2002)CrossRefGoogle Scholar
  53. 53.
    El Haddad, M., Topper, T., Smith, K.: Prediction of non propagating cracks. Eng. Fract. Mech. 11(3), 573–584 (1979)CrossRefGoogle Scholar
  54. 54.
    Elices, M., Guinea, G., Gomez, J., Planas, J.: The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69(2), 137–163 (2002)CrossRefGoogle Scholar
  55. 55.
    Erçin, G., Camanho, P., Xavier, J., Catalanotti, G., Mahdi, S., Linde, P.: Size effects on the tensile and compressive failure of notched composite laminates. Compos. Struct. 96, 736–744 (2013)CrossRefGoogle Scholar
  56. 56.
    Evans, A., Zok, F., Davis, J.: The role of interfaces in fiber-reinforced brittle matrix composites. Compos. Sci. Technol. 42(1), 3–24 (1991)CrossRefGoogle Scholar
  57. 57.
    Fett, T.: Failure of brittle materials near stress singularities. Eng. Fract. Mech. 53(4), 511–518 (1996)CrossRefGoogle Scholar
  58. 58.
    Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Garcia, I., Leguillon, D.: Mixed-mode crack initiation at a V-notch in presence of an adhesive joint. Int. J. Solids Struct. 49(15), 2138–2149 (2012)CrossRefGoogle Scholar
  60. 60.
    García, I., Mantič, V., Blázquez, A., París, F.: Transverse crack onset and growth in cross-ply [0/90]s laminates under tension. Application of a coupled stress and energy criterion. Int. J. Solids Struct. 51(23), 3844–3856 (2014a)CrossRefGoogle Scholar
  61. 61.
    García, I., Paggi, M., Mantič, V.: Fiber-size effects on the onset of fiber-matrix debonding under transverse tension: a comparison between cohesive zone and finite fracture mechanics models. Eng. Fract. Mech. 115, 96–110 (2014b)CrossRefGoogle Scholar
  62. 62.
    García, I., Mantič, V., Graciani, E.: A model for the prediction of debond onset in spherical-particle-reinforced composites under tension. Application of a coupled stress and energy criterion. Compos. Sci. Technol. 106, 60–67 (2015a)CrossRefGoogle Scholar
  63. 63.
    García, I., Mantič, V., Graciani, E.: Debonding at the fibre-matrix interface under remote transverse tension. One debond or two symmetric debonds? Eur. J. Mech. A Solids 53, 75–88 (2015b)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Garrett, K., Bailey, J.: Multiple transverse fracture in 90 cross-ply laminates of a glass fibre-reinforced polyester. J. Mater. Sci. 12(1), 157–168 (1977)CrossRefGoogle Scholar
  65. 65.
    Gleich, D., Van Tooren, M., Beukers, A.: Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J. Adhes. Sci. Technol. 15(9), 1091–1101 (2001)CrossRefGoogle Scholar
  66. 66.
    Goland, M., Reissner, E.: The stresses in cemented joints. J. Appl. Mech. 11(1), A17–A27 (1944)Google Scholar
  67. 67.
    Goswami, S., Becker, W.: Computation of 3-D stress singularities for multiple cracks and crack intersections by the scaled boundary finite element method. Int. J. Fract. 175(1), 13–25 (2012)CrossRefGoogle Scholar
  68. 68.
    Greco, F., Leonetti, L., Blasi, P.N.: Non-linear macroscopic response of fiber-reinforced composite materials due to initiation and propagation of interface cracks. Eng. Fract. Mech. 80, 92–113 (2012)CrossRefGoogle Scholar
  69. 69.
    Green, B., Wisnom, M., Hallett, S.: An experimental investigation into the tensile strength scaling of notched composites. Compos. A: Appl. Sci. Manuf. 38(3), 867–878 (2007)CrossRefGoogle Scholar
  70. 70.
    Grenestedt, J.L., Hallstrom, S.: Crack initiation from homogeneous and bimaterial corners. J. Appl. Mech. 64(4), 811–818 (1997)zbMATHCrossRefGoogle Scholar
  71. 71.
    Gross, D., Seelig, T.: Fracture Mechanics: With an Introduction to Micromechanics. Springer, Berlin (2011)CrossRefGoogle Scholar
  72. 72.
    Harry, R., Lecuyer, F., Marion, G.: Détection expérimentale de l’amorçage du délaminage de stratifiés à l’aide de l’émission acoustique. Comptes Rendus des onzièmes journées nationales sur les composites. Arcachon, France (1998)Google Scholar
  73. 73.
    Hashin, Z.: Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids 44(7), 1129–1145 (1996)CrossRefGoogle Scholar
  74. 74.
    He, M.Y., Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25(9), 1053–1067 (1989a)CrossRefGoogle Scholar
  75. 75.
    He, M.Y., Hutchinson, J.W.: Kinking of a crack out of an interface. J. Appl. Mech. 56(2), 270–278 (1989b)CrossRefGoogle Scholar
  76. 76.
    He, M.Y., Bartlett, A., Evans, A., Hutchinson, J.W.: Kinking of a crack out of an interface: role of in-plane stress. J. Am. Ceram. Soc. 74, 767–771 (1991)CrossRefGoogle Scholar
  77. 77.
    Hebel, J., Becker, W.: Numerical analysis of brittle crack initiation at stress concentrations in composites. Mech. Adv. Mater. Struct. 15(6–7), 410–420 (2008)CrossRefGoogle Scholar
  78. 78.
    Hebel, J., Dieringer, R., Becker, W.: Modeling brittle crack formation at geometrical and material discontinuities using a Finite Fracture Mechanics approach. Eng. Fract. Mech. 77(18), 3558–3572 (2010)CrossRefGoogle Scholar
  79. 79.
    Hein, V., Erdogan, F.: Stress singularities in a two-material wedge. Int. J. Fract. Mech. 7(3), 317–330 (1971)Google Scholar
  80. 80.
    Hell, S., Becker, W.: Hypersingularities in three-dimensional crack configurations in composite laminates. PAMM 14(1), 157–158 (2014)CrossRefGoogle Scholar
  81. 81.
    Hell, S., Weißgraeber, P., Felger, J., Becker, W.: A coupled stress and energy criterion for the assessment of crack initiation in single lap joints: A numerical approach. Eng. Fract. Mech. 117, 112–126 (2014)CrossRefGoogle Scholar
  82. 82.
    Henninger, C., Leguillon, D.: Adhesive fracture of an epoxy joint under thermal and mechanical loadings. J. Therm. Stresses 31, 59–76 (2008)CrossRefGoogle Scholar
  83. 83.
    Henninger, C., Leguillon, D., Martin, E.: Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model. Comptes Rend. Méc. 335(7), 388–393 (2007)CrossRefGoogle Scholar
  84. 84.
    Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976)CrossRefGoogle Scholar
  85. 85.
    Hills, D., Dini, D.: Characteristics of the process zone at sharp notch roots. Int. J. Solids Struct. 48(14), 2177–2183 (2011)CrossRefGoogle Scholar
  86. 86.
    Hofacker, M., Miehe, C.: A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns. Int. J. Numer. Meth. Eng. 93(3), 276–301 (2013)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Hong, A.P., Li, Y.N., Bažant, Z.P.: Theory of crack spacing in concrete pavements. J. Eng. Mech. 123(3), 267–275 (1997)CrossRefGoogle Scholar
  88. 88.
    Hu, G., Weng, G.: Influence of thermal residual stresses on the composite macroscopic behavior. Mech. Mater. 27(4), 229–240 (1998)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Inglis, C.: Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Naval Arch. 55, 219–230 (1913)Google Scholar
  90. 90.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  91. 91.
    Jaubert, A., Marigo, J.: Justification of a Paris-type fatigue law from cohesive forces model via a variational approach. Continuum Mech. Thermodyn. 18, 23–45 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Jenq, Y., Shah, S.P.: Two parameter fracture model for concrete. J. Eng. Mech. 111(10), 1227–1241 (1985)CrossRefGoogle Scholar
  93. 93.
    Kang, K.: Criteria for kinking out of an interface. Eng. Fract. Mech. 49, 587–598 (1994)CrossRefGoogle Scholar
  94. 94.
    Kant, T., Swaminathan, K.: Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments. Compos. Struct. 49(1), 65–75 (2000)CrossRefGoogle Scholar
  95. 95.
    Kim, J.K., Kim, D.S., Takeda, N.: Notched strength and fracture criterion in fabric composite plates containing a circular hole. J. Compos. Mater. 29(7), 982–998 (1995)CrossRefGoogle Scholar
  96. 96.
    Kirsch, G.: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42, 727–807 (1898)Google Scholar
  97. 97.
    Kitagawa, H., Takahashi, S.: Applicability of fracture mechanics to very small cracks or the cracks in the early stage. In: Second International Conference on Mechanical Behavior of Materials. ASM, Metals Park, Ohio, pp. 627–631 (1976)Google Scholar
  98. 98.
    Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77(18), 3625–3634 (2010)CrossRefGoogle Scholar
  99. 99.
    Kuhn, C., Müller, R.: Simulation of size effects by a phase field model for fracture. Theor. Appl. Mech. Lett. 4(5), 051,008 (2014)CrossRefGoogle Scholar
  100. 100.
    Kuhn, C., Schlüter, A., Müller, R.: On degradation functions in phase field fracture models. Comput. Mater. Sci. 108, 374–384 (2015)CrossRefGoogle Scholar
  101. 101.
    Kuna, M.: Finite elements in fracture mechanics. Theory–Numerics–Applications Solid Mechanics and Its Applications, vol. 201 (2013)Google Scholar
  102. 102.
    Labossiere, P., Dunn, M.: Fracture initiation at three-dimensional bimaterial interface corners. J. Mech. Phys. Solids 49, 609–634 (2001)zbMATHCrossRefGoogle Scholar
  103. 103.
    Lagunegrand, L., Lorriot, T., Harry, R., Wargnier, H., Quenisset, J.: Initiation of free-edge delamination in composite laminates. Compos. Sci. Technol. 66(10), 1315–1327 (2006)CrossRefGoogle Scholar
  104. 104.
    l’Armée, A.T., Stein, N., Becker, W.: Bending moment calculation for single lap joints with composite laminate adherends including bending-extensional coupling. Int. J. Adhes. Adhes. 66, 41–52 (2015)Google Scholar
  105. 105.
    Lazzarin, P., Zambardi, R.: A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 112(3), 275–298 (2001)CrossRefGoogle Scholar
  106. 106.
    Lazzarin, P., Quaresimin, M., Ferro, P.: A two-term stress function approach to evaluate stress distributions in bonded joints of different geometries. J. Strain Anal. Eng. Des. 37(5), 385–398 (2002)CrossRefGoogle Scholar
  107. 107.
    Lazzarin, P., Campagnolo, A., Berto, F.: A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading. Theor. Appl. Fract. Mech. 71, 21–30 (2014)CrossRefGoogle Scholar
  108. 108.
    Lee, W., Howard, S., Clegg, W.: Growth of interface defects and its effect on crack deflection and toughening criteria. Acta Mater. 44(10), 3905–3922 (1996)CrossRefGoogle Scholar
  109. 109.
    Leguillon, D.: Asymptotic analysis of a spontaneous crackgrowth. Application to a blunt crack. In: IUTAM Symposium on Non-linear Singularities in Deformation and Flow, Springer, pp. 169–180Google Scholar
  110. 110.
    Leguillon, D.: Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A Solids 21(1), 61–72 (2002)zbMATHCrossRefGoogle Scholar
  111. 111.
    Leguillon, D.: Computation of 3D singular elastic fields for the prediction of failure at corners. Key Eng. Mater. 251–252, 147–152 (2003)CrossRefGoogle Scholar
  112. 112.
    Leguillon, D.: A simple model of thermal crack pattern formation using the coupled criterion. Comptes Rend. Méc. 341(6), 538–546 (2013)CrossRefGoogle Scholar
  113. 113.
    Leguillon, D.: An attempt to extend the 2D coupled criterion for crack nucleation in brittle materials to the 3D case. Theor. Appl. Fract. Mech. 74, 7–17 (2014)CrossRefGoogle Scholar
  114. 114.
    Leguillon, D., Martin, E.: The strengthening effect caused by an elastic contrast—part I: the bimaterial case. Int. J. Fract. 179(1–2), 157–167 (2013a)CrossRefGoogle Scholar
  115. 115.
    Leguillon, D., Martin, E.: The strengthening effect caused by an elastic contrast—part II: stratification by a thin stiff layer. Int. J. Fract. 179(1–2), 169–178 (2013b)CrossRefGoogle Scholar
  116. 116.
    Leguillon, D., Murer, S.: A criterion for crack kinking out of an interface. Key Eng. Mater. 385–387, 9–12 (2008a)CrossRefGoogle Scholar
  117. 117.
    Leguillon, D., Murer, S.: Crack deflection in a biaxial stress state. Int. J. Fract. 150(1–2), 75–90 (2008b)zbMATHCrossRefGoogle Scholar
  118. 118.
    Leguillon, D., Murer, S.: Fatigue crack nucleation at a stress concentration point. In: CP2012 Conference Proceedings, vol. 46 (2012)Google Scholar
  119. 119.
    Leguillon, D., Yosibash, Z.: Crack onset at a V-notch. Influence of the notch tip radius. Int. J. Fract. 122(1–2), 1–21 (2003)CrossRefGoogle Scholar
  120. 120.
    Leguillon, D., Lacroix, C., Martin, E.: Crack deflection by an interface—asymptotics of the residual thermal stresses. Int. J. Solids Struct. 38, 7423–7445 (2001)zbMATHCrossRefGoogle Scholar
  121. 121.
    Leguillon, D., Laurencin, J., Dupeux, M.: Failure initiation in an epoxy joint between two steel plates. Eur. J. Mech. A Solids 22(4), 509–524 (2003)zbMATHCrossRefGoogle Scholar
  122. 122.
    Leguillon, D., Karnaeva, E., Baroni, A., Putot, C.: Tight sedimentary covers for \(\text{ CO }_2\) sequestration. Int. J. Fract. 184, 113–122 (2013)CrossRefGoogle Scholar
  123. 123.
    Leguillon, D., Haddad, O., Adamowska, M., da Costa, P.: Crack pattern formation and spalling in functionalized thin films. Proc. Mater. Sci. 3, 104–109 (2014)CrossRefGoogle Scholar
  124. 124.
    Leguillon, D., Martin, E., Ševeček, O., Bermejo, R.: Application of the coupled stress–energy criterion to predict the fracture behaviour of layered ceramics designed with internal compressive stresses. Eur. J. Mech. A Solids 54, 94–104 (2015)MathSciNetCrossRefGoogle Scholar
  125. 125.
    Lenci, S.: Analysis of a crack at a weak interface. Int. J. Fract. 108(3), 275–290 (2001)CrossRefGoogle Scholar
  126. 126.
    Leonov, M.Y., Panasyuk, V.: Development of the smallest cracks in a solid. Prikl Mekh 5(4), 391–401 (1959)MathSciNetGoogle Scholar
  127. 127.
    Li, J., Zhang, X.: A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials. Eng. Fract. Mech. 73(4), 505–523 (2006)CrossRefGoogle Scholar
  128. 128.
    Li, X., Xu, L.: T-stress across static crack kinking. J. Appl. Mech. 74, 181–190 (2007)zbMATHCrossRefGoogle Scholar
  129. 129.
    Li, Y.N., Bazant, Z.P.: Penetration fracture of ice plate: 2d analysis and size effect. J. Eng. Mech. 120(7), 1481–1498 (1994)CrossRefGoogle Scholar
  130. 130.
    Li, Y.N., Hong, A.P., Bažant, Z.P.: Initiation of parallel cracks from surface of elastic half-plane. Int. J. Fract. 69(4), 357–369 (1995)CrossRefGoogle Scholar
  131. 131.
    Liao, W., Sun, C.: The determination of mode III fracture toughness in thick composite laminates. Compos. Sci. Technol. 56(4), 489–499 (1996)CrossRefGoogle Scholar
  132. 132.
    Liu, C.H., Nairn, J.A.: Analytical and experimental methods for a fracture mechanics interpretation of the microbond test including the effects of friction and thermal stresses. Int. J. Adhes. Adhes. 19(1), 59–70 (1999)CrossRefGoogle Scholar
  133. 133.
    Mantič, V.: Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion. Int. J. Solids Struct. 46(6), 1287–1304 (2009)zbMATHCrossRefGoogle Scholar
  134. 134.
    Mantič, V.: Prediction of initiation and growth of cracks in composites. Coupled stress and energy criterion of the Finite FractureMechanics. In: 16th European Conference on Composite Materials (ECCM-14),European Society of Composite Materials (ESCM)(2014)Google Scholar
  135. 135.
    Mantič, V., García, I.: Crack onset and growth at the fibre-matrix interface under a remote biaxial transverse load. Application of a coupled stress and energy criterion. Int. J. Solids Struct. 49(17), 2273–2290 (2012)CrossRefGoogle Scholar
  136. 136.
    Martin, E., Leguillon, D.: Energetic conditions for interfacial failure in the vicinity of a matrix crack in brittle matrix composites. Int. J. Solids Struct. 41(24), 6937–6948 (2004)zbMATHCrossRefGoogle Scholar
  137. 137.
    Martin, E., Poitou, B., Leguillon, D., Gatt, J.: Competition between deflection and penetration at an interface in the vicinity of a main crack. Int. J. Fract. 151(2), 247–268 (2008)zbMATHCrossRefGoogle Scholar
  138. 138.
    Martin, E., Leguillon, D., Carrère, N.: A twofold strength and toughness criterion for the onset of free-edge shear delamination in angle-ply laminates. Int. J. Solids Struct. 47(9), 1297–1305 (2010)zbMATHCrossRefGoogle Scholar
  139. 139.
    Martin, E., Leguillon, D., Carrère, N.: A coupled strength and toughness criterion for the prediction of the open hole tensile strength of a composite plate. Int. J. Solids Struct. 49(26), 3915–3922 (2012)CrossRefGoogle Scholar
  140. 140.
    Mayland, W., Becker, W.: Scaled boundary finite element analysis of stress singularities in piezoelectric multi-material systems. PAMM 9(1), 99–102 (2009)CrossRefGoogle Scholar
  141. 141.
    Maz’ya, V.G., Nazarov, S.A.: Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points. Trudy Moskovskogo Matematicheskogo Obshchestva 50, 79–129 (1987)zbMATHGoogle Scholar
  142. 142.
    Mendoza-Navarro, L.E., Diaz-Diaz, A., Castañeda-Balderas, R., Hunkeler, S., Noret, R.: Interfacial failure in adhesive joints: experiments and predictions. Int. J. Adhes. Adhes. 44, 36–47 (2013)CrossRefGoogle Scholar
  143. 143.
    Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Mittelman, B., Yosibash, Z.: Asymptotic analysis of the potential energy difference because of crack at a V-notch edge in a 3D domain. Eng. Fract. Mech. 131, 232–256 (2014)CrossRefGoogle Scholar
  145. 145.
    Mittelstedt, C., Becker, W.: Interlaminar stress concentrations in layered structures: part I—a selective literature survey on the free-edge effect since 1967. J. Compos. Mater. 38(12), 1037–1062 (2004a)CrossRefGoogle Scholar
  146. 146.
    Mittelstedt, C., Becker, W.: A single-layer theory approach to stress concentration phenomena in layered plates. Compos. Sci. Technol. 64(10), 1737–1748 (2004b)CrossRefGoogle Scholar
  147. 147.
    Mittelstedt, C., Becker, W.: A variational finite layer technique for the investigation of thermally induced stress concentrations in composite structures. J. Therm. Stresses 27(10), 953–981 (2004c)CrossRefGoogle Scholar
  148. 148.
    Mittelstedt, C., Becker, W.: Fast and reliable analysis of free-edge stress fields in a thermally loaded composite strip by a layerwise laminate theory. Int. J. Numer. Methods Eng. 67(6), 747–770 (2006)zbMATHCrossRefGoogle Scholar
  149. 149.
    Modniks, J., Spārniņš, E., Andersons, J., Becker, W.: Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension. J. Compos. Mater. 49(9), 1071–1080 (2014)CrossRefGoogle Scholar
  150. 150.
    Moradi, A., Carrère, N., Leguillon, D., Martin, E., Cognard, J.Y.: Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: Effect of material and geometrical parameters. Int. J. Adhes. Adhes. 47, 73–82 (2013a)CrossRefGoogle Scholar
  151. 151.
    Moradi, A., Leguillon, D., Carrère, N.: Influence of the adhesive thickness on a debonding—an asymptotic model. Eng. Fract. Mech. 114, 55–68 (2013b)CrossRefGoogle Scholar
  152. 152.
    Müller, A., Becker, W., Stolten, D., Hohe, J.: A hybrid method to assess interface debonding by finite fracture mechanics. Eng. Fract. Mech. 73(8), 994–1008 (2006)CrossRefGoogle Scholar
  153. 153.
    Murer, S., Leguillon, D.: Static and fatigue failure of quasi-brittle materiala at a V-notch using a Dugale model. Eur. J. Mech. A Solids 29, 109–118 (2010)MathSciNetCrossRefGoogle Scholar
  154. 154.
    Nairn, J.A.: Matrix microcracking in composites. Polym. Matrix Compos. 2, 403–432 (2000)Google Scholar
  155. 155.
    Neto, J., Campilho, R., Da Silva, L.: Parametric study of adhesive joints with composites. Int. J. Adhes. Adhes. 37, 96–101 (2012)CrossRefGoogle Scholar
  156. 156.
    Neuber, H.: Elastisch-strenge Lösungen zur Kerbwirkung bei Scheiben und Umdrehungskörpern. ZAMM 13, 439 (1933)zbMATHGoogle Scholar
  157. 157.
    Neuber, H.: Zur Theorie der Kerbwirkung bei Biegung und Schub. Ing. Arch. 5(3), 238–244 (1934)zbMATHCrossRefGoogle Scholar
  158. 158.
    Neuber, H.: Kerbspannungslehre: Theorie der Spannungskonzentration. Genaue Berechnung der Festigkeit. Klassiker der Technik, Springer, Berlin (2000)Google Scholar
  159. 159.
    Novozhilov, V.: On a necessary and sufficient criterion for brittle strength. J. Appl. Math. Mech. 33(2), 201–210 (1969)CrossRefGoogle Scholar
  160. 160.
    Ogihara, S., Koyanagi, J.: Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method. Compos. Sci. Technol. 70(1), 143–150 (2010)CrossRefGoogle Scholar
  161. 161.
    Ojalvo, I., Eidinoff, H.: Bond thickness effects upon stresses in single-lap adhesive joints. AIAA J. 16(3), 204–211 (1978)CrossRefGoogle Scholar
  162. 162.
    Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Fluids Eng. 85(4), 528–533 (1963)Google Scholar
  163. 163.
    Parvizi, A., Garrett, K., Bailey, J.: Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. J. Mater. Sci. 13(1), 195–201 (1978)CrossRefGoogle Scholar
  164. 164.
    Peterson, R., Wahl, A.: Two and three dimensional cases of stress concentration and comparison with fatigue tests. Trans. ASME 58, A15 (1936)Google Scholar
  165. 165.
    Picard, D., Leguillon, D., Putot, C.: A method to estimate the influence of the notch root radius on the fracture toughness of ceramics. J. Eur. Ceram. Soc. 26, 1421–1427 (2006)CrossRefGoogle Scholar
  166. 166.
    Pilkey, W., Pilkey, D.: Peterson’s Stress Concentration Factors. Wiley, Hoboken (2008)Google Scholar
  167. 167.
    Pipes, R.B., Pagano, N.: Interlaminar stresses in composite laminates under uniform axial extension. J. Compos. Mater. 4(4), 538–548 (1970)Google Scholar
  168. 168.
    Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A.: A generalized Paris’ law for fatigue crack growth. J. Mech. Phys. Solids 54(7), 1333–1349 (2006)zbMATHCrossRefGoogle Scholar
  169. 169.
    Pugno, N., Cornetti, P., Carpinteri, A.: New unified laws in fatigue: from the Wöhler’s to the Paris’ regime. Eng. Fract. Mech. 74(4), 595–601 (2007)CrossRefGoogle Scholar
  170. 170.
    Qian, Z., Akisanya, A.: An experimental investigation of failure initation in bonded joints. Acta Mater. 46, 4895–4904 (1998)CrossRefGoogle Scholar
  171. 171.
    Quesada, D., Leguillon, D., Putot, C.: Multiple failures in or around a stiff inclusion embedded in a soft matrix under a compressive loading. Eur. J. Mech. A. Solids 28(4), 668–679 (2009a)zbMATHCrossRefGoogle Scholar
  172. 172.
    Quesada, D., Picard, D., Putot, C., Leguillon, D.: The role of the interbed thickness on the step-over fracture under overburden pressure. Int. J. Rock Mech. Min. Sci. 46(2), 281–288 (2009b)CrossRefGoogle Scholar
  173. 173.
    Rabinovitch, O.: An extended high order cohesive interface approach to the debonding analysis of FRP strengthened beams. Int. J. Mech. Sci. 81, 1–16 (2014)CrossRefGoogle Scholar
  174. 174.
    Reedy, E., Guess, T.: Comparison of butt tensile strength data with interface corner stress intensity factor prediction. Int. J. Solids Struct. 30(21), 2929–2936 (1993)CrossRefGoogle Scholar
  175. 175.
    Rice, J.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55, 98–103 (1988)CrossRefGoogle Scholar
  176. 176.
    Romani, R., Bornert, M., Leguillon, D., Le Roy, R., Sab, K.: Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-Theoretical predictions based on a coupled criterion. Eur. J. Mech. A Solids 51, 172–182 (2015)CrossRefGoogle Scholar
  177. 177.
    Rosendahl, P., Weißgraeber, P., Stein, N., Becker, W.: Asymmetric crack onset at open-holes under tensile and in-plane bending loading. Int. J. Solids Struct. Manuscript in preparation (2016)Google Scholar
  178. 178.
    Rybicki, E., Schmueser, D., Fox, J.: An energy release rate approach for stable crack growth in the free-edge delamination problem. J. Compos. Mater. 11(4), 470–487 (1977)CrossRefGoogle Scholar
  179. 179.
    Saeedi, N., Sab, K., Caron, J.F.: Delaminated multilayered plates under uniaxial extension. Part I: analytical analysis using a layerwise stress approach. Int. J. Solids Struct. 49(26), 3711–3726 (2012a)CrossRefGoogle Scholar
  180. 180.
    Saeedi, N., Sab, K., Caron, J.F.: Delaminated multilayered plates under uniaxial extension. Part II: efficient layerwise mesh strategy for the prediction of delamination onset. Int. J. Solids Struct. 49(26), 3727–3740 (2012b)CrossRefGoogle Scholar
  181. 181.
    Sapora, A., Cornetti, P., Carpinteri, A.: A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading. Eng. Fract. Mech. 97, 216–226 (2013)CrossRefGoogle Scholar
  182. 182.
    Sator, C., Becker, W.: Closed-form solutions for stress singularities at plane bi-and trimaterial junctions. Arch. Appl. Mech. 82(5), 643–658 (2012)zbMATHCrossRefGoogle Scholar
  183. 183.
    Schlüter, A., Willenbücher, A., Kuhn, C., Müller, R.: Phase field approximation of dynamic brittle fracture. Comput. Mech. 54(5), 1141–1161 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  184. 184.
    Seweryn, A.: Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47(5), 673–681 (1994)CrossRefGoogle Scholar
  185. 185.
    Seweryn, A., Poskrobko, S., Mróz, Z.: Brittle fracture in plane elements with sharp notches under mixed-mode loading. J. Eng. Mech. 123(6), 535–543 (1997)CrossRefGoogle Scholar
  186. 186.
    Song, C.: A matrix function solution for the scaled boundary finite-element equation in statics. Comput. Methods Appl. Mech. Eng. 193(23), 2325–2356 (2004)zbMATHCrossRefGoogle Scholar
  187. 187.
    Stein, N., Weißgraeber, P., Becker, W.: A model for brittle failure in adhesive lap joints of arbitrary joint configuration. Compos. Struct. 133, 707–718 (2015)CrossRefGoogle Scholar
  188. 188.
    Sun, Z., Ooi, E.T., Song, C.: Finite fracture mechanics analysis using the scaled boundary finite element method. Eng. Fract. Mech. 134, 330–353 (2015)CrossRefGoogle Scholar
  189. 189.
    Suresh, S.: Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (1998a)CrossRefGoogle Scholar
  190. 190.
    Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998b)CrossRefGoogle Scholar
  191. 191.
    Tada, H., Paris, P., Irwin, G.: The Stress Analysis of Cracks Handbook. Paris Productions Inc, Wilmington (1985)Google Scholar
  192. 192.
    Taylor, D.: The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Elsevier Science, New York (2007)Google Scholar
  193. 193.
    Taylor, D., Cornetti, P., Pugno, N.: The fracture mechanics of finite crack extension. Eng. Fract. Mech. 72(7), 1021–1038 (2005)CrossRefGoogle Scholar
  194. 194.
    Theocaris, P.: The order of singularity at a multi-wedge corner of a composite plate. Int. J. Eng. Sci. 12(2), 107–120 (1974)zbMATHCrossRefGoogle Scholar
  195. 195.
    Theocaris, P., Milios, J.: Crack-arrest at a bimaterial interface. Int. J. Solids Struct. 17(2), 217–230 (1981)zbMATHCrossRefGoogle Scholar
  196. 196.
    Tran, V., Leguillon, D., Krishnan, A., Xu, L.: Interface crack initiation at V-notches along adhesive bonding in weakly bonded polymers subjected to mixed-mode loading. Int. J. Fract. 35(1), 1–15 (2012)Google Scholar
  197. 197.
    Tsai, M.Y., Oplinger, D., Morton, J.: Improved theoretical solutions for adhesive lap joints. Int. J. Solids Struct. 35(12), 1163–1185 (1998)zbMATHCrossRefGoogle Scholar
  198. 198.
    Tvergaard, V.: Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng. A 125(2), 203–213 (1990)CrossRefGoogle Scholar
  199. 199.
    Verhoosel, C.V., Borst, R.: A phase-field model for cohesive fracture. Int. J. Numer. Methods Eng. 96(1), 43–62 (2013)CrossRefGoogle Scholar
  200. 200.
    Vu-Quoc, L., Tran, V.: Singularity analysis and fracture energy-release rate for composites: piecewise homogeneous-anisotropic materials. Comput. Methods Appl. Mech. Eng. 195(37), 5162–5197 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    Waddoups, M., Eisenmann, J., Kaminski, B.: Macroscopic fracture mechanics of advanced composite materials. J. Compos. Mater. 5(4), 446–454 (1971)CrossRefGoogle Scholar
  202. 202.
    Wang, S., Choi, I.: The Mechanics of Delamination in Fiber-Reinforced Composite Materials. Part 1. Stress Singularities and Solution Structure. Tech. rep., DTIC Document (1983)Google Scholar
  203. 203.
    Weißgraeber, P., Becker, W.: A new Finite Fracture Mechanics approach for assessing the strength of bonded lap joints. Key Eng. Mater. 471, 1075–1080 (2011a)CrossRefGoogle Scholar
  204. 204.
    Weißgraeber, P., Becker, W.: Predicting effective strengths of bonded lap joints with a finite fracture mechanics criterion.In: Fæster, S., Jensen, D.J., Ralph, B., Sørensen, B. (eds.) Proceedings of the 32nd Risø International Symposium in Materials Science Composite Materials for Structural Performance: Towards higher Limits. Technical University of Denmark, pp 479–486 (2011b)Google Scholar
  205. 205.
    Weißgraeber, P., Becker, W.: Finite Fracture Mechanics model for mixed mode fracture in adhesive joints. Int. J. Solids Struct. 50(14), 2383–2394 (2013)CrossRefGoogle Scholar
  206. 206.
    Weißgraeber, P., Stein, N., Becker, W.: A general sandwich-type model for adhesive joints with composite adherends. Int. J. Adhes. Adhes. 55, 56–63 (2014)CrossRefGoogle Scholar
  207. 207.
    Weißgraeber, P., Felger, J., l’Armée, A.T., Becker, W.: Crack initiation in single lap joints: effects of geometrical and material properties. Int. J. Fract. 192(2), 155–166 (2015a)CrossRefGoogle Scholar
  208. 208.
    Weißgraeber, P., Hell, S., Becker, W.: Crack nucleation in negative geometries. Eng. Fract. Mech. Under review (2015b)Google Scholar
  209. 209.
    Weißgraeber, P., Felger, J., Geipel, D., Becker, W.: Cracks at elliptical holes: stress intensity factor and finite fracture mechanics solution. Eur. J. Mech. A Solids 55, 192–198 (2016)CrossRefGoogle Scholar
  210. 210.
    Westergaard, H.: Bearing pressures and cracks. J. Appl. Mech. 6, 49–53 (1939)Google Scholar
  211. 211.
    Whitney, J.M., Nuismer, R.: Stress fracture criteria for laminated composites containing stress concentrations. J. Compos. Mater. 8(3), 253–265 (1974)CrossRefGoogle Scholar
  212. 212.
    Wieghardt, K.: Über das Spalten und Zerreißen elastischer Körper. Z Mathematik und Physik 55(2), 60–103 (1907)zbMATHGoogle Scholar
  213. 213.
    Williams, M.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19(4), 526–528 (1952)Google Scholar
  214. 214.
    Wolf, J.P.: The Scaled Boundary Finite Element Method. John Wiley & Sons Inc, Hoboken (2003)Google Scholar
  215. 215.
    Xu, B.X., Schrade, D., Gross, D., Mueller, R.: Phase field simulation of domain structures in cracked ferroelectrics. Int. J. Fract. 165(2), 163–173 (2010)zbMATHCrossRefGoogle Scholar
  216. 216.
    Xu, L.R., Huang, Y.Y., Rosakis, A.J.: Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions. J. Mech. Phys. Solids 51(3), 461–486 (2003)zbMATHCrossRefGoogle Scholar
  217. 217.
    Yosibash, Z., Priel, E., Leguillon, D.: A failure criterion for brittle elastic materials under mixed-mode loading. Int. J. Fract. 141(1–2), 291–312 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Philipp Weißgraeber
    • 1
  • Dominique Leguillon
    • 2
  • Wilfried Becker
    • 1
    Email author
  1. 1.Fachgebiet StrukturmechanikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institut Jean-Le-Rond-d’Alembert, CNRS UMR 7190Université Pierre et Marie Curie (Paris-6)Paris Cedex 05France

Personalised recommendations