Archive of Applied Mechanics

, Volume 86, Issue 6, pp 979–1002 | Cite as

Dynamics and long-time behavior of a small bubble in viscous liquids with applications to food rheology

Impact of pressure and material characteristics on bubble shape


In this work, the physical behavior of a small, spherical bubble in a highly viscous, incompressible liquid phase is analyzed under specific pressure impacts. This represents an attractive topic in the food industry, since it is of interest to know under which conditions this two-phase dispersion exhibits a stable state. The specific material law of a second-order liquid, which includes Newtonian and non-Newtonian material constants, provides a nonlinear initial value problem for the radius of the bubble. This system is solved numerically by an efficient version of the classical Runge–Kutta method. By parameter variation, the impact of the dimensionless quantities associated with inertia, non-Newtonian material coefficients, pressure, surface tension and viscosity on the two-phase system is investigated. This particularly yields insights into the stability behavior of the bubble surface. The solution curves show various characteristics such as asymptotic oscillations or monotonically decreasing profiles. These results are transferred to a specific non-Newtonian and Newtonian substance. Finally, by studying stationary solutions, it becomes obvious that only the excitation pressure and the surface tension determine the new equilibrium state of the bubble, which in particular represents its long-time behavior. Furthermore, a sinusoidal driving pressure is used to investigate unstable solutions. The aim of the paper was to bring together these mathematical stability results to practice-oriented considerations.


Bubble dynamics Rayleigh–Plesset equation Second-order fluid Stability ranges Stationary solution  Long-time behavior 



This research project was supported in the frame of the DFG-/AIF-Cluster “Protein foams in the food production: Elucidation of Mechanisms, Modeling and Simulation.” The funding was provided by the German Research Foundation (DFG).


  1. 1.
    Hinrichs, J., Schieberle, P., Eisner, M.: Einfluss von Schaumkomposition und -struktur auf die Aromastofffreisetzung und Aromawahrnehmung gasbeaufschlagter Lebensmittelsysteme (Subproject 4, DFG/AiF Research Cluster 5) German Federation of Industrial Research Associations (AiF), Research Group of the German Food Industry (FEI), Bonn. Accessed 10 October 2013 (2011–2014)
  2. 2.
    Yampolskaya, G., Platikanov, D.: Proteins at fluid interfaces: adsorption layers and thin liquid films. Adv. Colloid Interface Sci. 128–130, 159–183 (2006)CrossRefGoogle Scholar
  3. 3.
    Lee, M.H., Reich, D.H., Stebe, K.J., Leheny, R.L.: Combined passive and active microrheology study of protein-layer formation at an air–water interface. Langmuir 26, 2650–2658 (2010)CrossRefGoogle Scholar
  4. 4.
    Besner, H.: Grenzflächenwechselwirkungen und Mechanismen der Schaumstabilisierung beim Aufschäumen von Sahne. Dissertation, Faculty of Brewing, Food Technology and Dairy Science, Technical University of Munich (2004)Google Scholar
  5. 5.
    Shukla, K.N.: A generalization of the Rayleigh–Plesset equation of bubble dynamics. ZAMM J. Appl. Math. Mech. 67, 470–471 (1987)CrossRefMATHGoogle Scholar
  6. 6.
    Leighton, T.G.: Derivation of the Rayleigh–Plesset equation in terms of volume. ISVR Technical Report No. 308 (2007)Google Scholar
  7. 7.
    Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9, 145–185 (1977)CrossRefMATHGoogle Scholar
  8. 8.
    Prosperetti, A.: A generalization of the Rayleigh–Plesset equation of bubble dynamics. AIP Phys. Fluids 25(3), 409–410 (1982). doi: 10.1063/1.863775 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  10. 10.
    Plesset, M.S., Hsieh, D.: Theory of gas bubble dynamics in oscillating pressure fields. AIP Phys. Fluids 3(6), 882–892 (1960). doi: 10.1063/1.1706152 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Aksel, N.: Einfluss der Kompressibilität auf Strömungen nichtnewtonscher Fluide. Dehnströmungen und Stabilität von Schichtenströmungen unter besonderer Berücksichtigung der newtonschen Grenzfälle. Habilitationsschrift für das Fachgebiet Mechanik. Faculty of Chemical Engineering, University of Karlsruhe (1990)Google Scholar
  12. 12.
    Prosperetti, A.: Bubble dynamics: a review and some recent results. Appl. Sci. Res. 38(1), 145–165 (1982). doi: 10.1007/BF00385945 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Aksel, N.: A model for the bulk viscosity of a non-Newtonian fluid. Contin. Mech. Thermodyn. 7(3), 333–339 (1995). doi: 10.1007/BF01176292 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kumacheva, E., Garstecki, P.: Microfluidic Reactors for Polymer Particles. Wiley, London (2011)CrossRefGoogle Scholar
  15. 15.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York, pp. 4–10, 206, 359, 364 (1978)Google Scholar
  16. 16.
    Böhme, G.: Strömungsmechanik nichtnewtonscher Fluide. Leitfäden der angewandten Mathematik und Mechanik LAMM. B. G. Teubner Stuttgart, Leipzig, Wiesbaden, pp. 212–233, 264–280 (2000)Google Scholar
  17. 17.
    Giesekus, H.: Phänomenologische Rheologie. Eine Einführung. Springer, Berlin (1994)CrossRefGoogle Scholar
  18. 18.
    Coleman, B.D., Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Ration. Mech. Anal. 6, 355–370 (1960). doi: 10.1007/BF00276168 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Spurk, J. H., Aksel, N.: Fluid Mechanics, 2nd. edn. Springer, Berlin, pp. 75–94, 162–166. ISBN/ISSN/ISMV: 978-3-540-73536-6 (2008)Google Scholar
  20. 20.
    Passerini, A., Patria, C., Thäter, G.: Third grade fluids in the aperture domain: existence, regularity and decay. Math. Models Methods Appl. Sci. 10(5), 711–736 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Vol.1: Fluid Mechanics. Wiley, New York (1987)Google Scholar
  22. 22.
    Tanner, R.I.: Engineering Rheology. Oxford University Press, New York (2002)MATHGoogle Scholar
  23. 23.
    Gausepohl, H., Gellert, R.: Polystyrol. Kunststoff Handbuch 4. Hanser Verlag, München, pp. 245–246 (1996)Google Scholar
  24. 24.
    Rath, H.J.: Zum Einfluss der Kompressibilität des Fluides bei sphärisch schwingenden Gasblasen in Flüssigkeiten. Ing.-Arch. 47, 383–390 (1978)CrossRefMATHGoogle Scholar
  25. 25.
    Greiner, W.: Klassische Mechanik 1, Kinematik und Dynamik der Punktteilchen Relativität, 8th edn, pp. 196–208. Verlag Harri Deutsch GmbH, Frankfurt am Main (2007)Google Scholar
  26. 26.
    Korsch, H.J.: Mathematische Ergänzungen zur Einführung in die Physik, 2nd edn, pp. 157–169. Binomi Verlag, Barsinghausen (1999)Google Scholar
  27. 27.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  28. 28.
    Alehossein, H., Qin, Z.: Numerical analysis of Rayleigh–Plesset equation for cavitating water jets. Int. J. Numer. Methods Eng. 72, 780–807 (2007). doi: 10.1002/nme.2032 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Hao, Y., Prosperetti, A.: The dynamics of vapor bubbles in acoustic pressure fields. AIP Phys. Fluids 11(8), 2008–2019 (1999). doi: 10.1063/1.870064 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Ebermann, R., Elmadfa, I.: Lehrbuch Lebensmittelchemie und Ernährung. Springer, New York (2008)Google Scholar
  31. 31.
    Baltes, W., Matissek, R.: Lebensmittelchemie, 7th edn. Springer, New York (2011)CrossRefGoogle Scholar
  32. 32.
    Delgado, A.: Proteinschäume in der Lebensmittelproduktion: Mechanismenaufklärung, Modellierung und Simulation (5/1/2011–4/30/2014). Project sponsors: German Research Foundation (DFG), Research Group of the German Food Industry (FEI), Bonn. (2011)
  33. 33.
    Gnotke, O.: Experimentelle und theoretische Untersuchungen zur Bestimmung von veränderlichen Blasengrößen und Blasengrößenverteilungen in turbulenten Gas-Flüssigkeits-Strömungen. Dissertation, Technical University of Darmstadt, Shaker Verlag Aachen, pp. 14–17 (2004)Google Scholar
  34. 34.
    Engelhardt, K., Lexis, M., Gochev, G.: pH effects on the molecular structure of \(\upbeta \)-lactoglobulin modified air-water interfaces and its impact on foam rheology. Langmuir 29, 11646–11655 (2013). doi: 10.1021/la402729g CrossRefGoogle Scholar
  35. 35.
    Fritz, H., Schulze, G.: Fertigungstechnik, 10th edn. Springer, Berlin (2012)CrossRefGoogle Scholar
  36. 36.
    Walter, W.: Gewöhnliche Differentialgleichungen, 7th edn. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  37. 37.
    Aksel, N.: A brief note from the editor on the “second-order fluid”. Acta Mech. 157(1–4), 235–236 (2002)CrossRefMATHGoogle Scholar
  38. 38.
    Steele, C.M., Van Lieshout, P.H.H.M., Goff, H.D.: The rheology of liquids: a comparison of clinicians’ subjective impressions and objective measurement. Dysphagia 18, 182–195 (2003). doi: 10.1007/s00455-002-0104-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexandre Wolf
    • 1
  • Cornelia Rauh
    • 1
    • 2
  • Antonio Delgado
    • 1
  1. 1.Institute of Fluid MechanicsFriedrich-Alexander University of Erlangen-NurembergErlangenGermany
  2. 2.Institute of Food Technology and Food ChemistryTechnical University of BerlinBerlinGermany

Personalised recommendations