Archive of Applied Mechanics

, Volume 86, Issue 4, pp 617–625 | Cite as

A web-based tool for the interactive visualization of stresses in an infinite plate with an elliptical hole under simple tension: www.ltm.fau.de/plate

  • Jan Friederich
  • Sebastian Pfaller
  • Paul Steinmann
Original

Abstract

We present a web-based software tool for the interactive visualization of stresses around an elliptical hole in an infinite plate under simple tension (http://www.ltm.fau.de/plate). The analytical solution of this fundamental problem dates back more than 100 years and has served as a vital contribution in many disciplines of solid mechanics ever since. The presented software provides insight into this important problem by instantly rendering the analytical solution for immediate changes of the dimensions and orientation of the hole, and by allowing the user to zoom closer into regions of interest. The application is openly accessible from modern mobile and desktop devices for the use in education and research and may provide benchmark solutions for numerical methods.

Keywords

Infinite plate Elliptical hole Plane elasticity  Analytical solution 

References

  1. 1.
    Ahlfors, L.V.: Complex Analysis, 2nd edn. McGraw-Hill, New York (1966)MATHGoogle Scholar
  2. 2.
    Friederich, J., Pfaller, S., Steinmann, P.: Infinite plate with an elliptical hole under simple tension. http://www.ltm.fau.de/plate (2015)
  3. 3.
    Goursat, É.: Sur l’équation \(\varDelta ~\varDelta ~u = 0\). Bull. Soc. Math. Fr. 26, 236–237 (1898)MathSciNetMATHGoogle Scholar
  4. 4.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. 221, 163–198 (1921)CrossRefGoogle Scholar
  5. 5.
    Inglis, C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Nav. Archit. Lond. 55, 219–230 (1913)Google Scholar
  6. 6.
    Khronos Group: WebGL–OpenGL ES 2.0 for the Web. https://www.khronos.org/webgl (2015)
  7. 7.
    Kirsch, G.: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Z. Ver. Dtsch. Ing. 42, 797–807 (1898)Google Scholar
  8. 8.
    Kolosov, G.V.: On an application of complex function theory to a plane problem of the mathematical theory of elasticity (in russian). Ph.D. thesis, Dorpat (1909)Google Scholar
  9. 9.
    Muskhelishvili, N.I.: Sur l’intégration de l’équation biharmonique. Bull. Acad. Sci. Russ. 13, 663–686 (1919)MATHGoogle Scholar
  10. 10.
    Muskhelishvili, N.I.: Sur la solution du problème biharmonique pour l’aire extérieur à une ellipse. Math. Z. 26, 700–705 (1927)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff International Publishing, Leyden (1975)MATHGoogle Scholar
  12. 12.
    Pöschl, T.: Über eine partikuläre Lösung des biharmonischen Problems für den Außenraum der Ellipse. Math. Z. 11, 89–96 (1921)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, Kogakusha (1982)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jan Friederich
    • 1
  • Sebastian Pfaller
    • 1
  • Paul Steinmann
    • 1
  1. 1.Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations