Advertisement

Archive of Applied Mechanics

, Volume 84, Issue 9–11, pp 1583–1593 | Cite as

On solitons in media modelled by the hierarchical KdV equation

  • Andrus SalupereEmail author
  • Martin Lints
  • Jüri Engelbrecht
Special Issue

Abstract

In the present paper, formation of solitons in microstructured continuum, modelled by a hierarchical Korteweg–de Vries equation, is studied. The model equation is integrated numerically making use of the discrete Fourier transform-based pseudospectral method under different initial conditions. Main attention is paid to the formation of hidden solitons and applicability of the discrete spectral analysis.

Keywords

Solitons Microstructured continuum Hidden solitons Discrete spectral analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe K., Satofuka N.: Recurrence of initial state of nonlinear ion waves. Phys. Fluids 24, 1045–1048 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ablowitz M., Clarkson P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alibert J.J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berezovski A., Engelbrecht J., Berezovski M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Berezovski A., Engelbrecht J., Maugin G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81, 229–240 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Berezovski A., Engelbrecht J., Salupere A., Tamm K., Peets T., Berezovski M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50, 1981–1990 (2013)CrossRefGoogle Scholar
  7. 7.
    Bois P.: Joseph Boussinesq (1842–1929): a pioneer of mechanical modelling at the end of the 19th Century. C. R. Mécanique 335, 479–495 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Christov C., Maugin G., Porubov A.: On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mécanique 335(9–10), 521–535 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Christov I.: Internal solitary waves in the ocean: analysis using the periodic, inverse scattering transform. Math. Comput. Simul. 80(1), 192–201 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Christov I.: Hidden solitons in the Zabusky–Kruskal experiment: analysis using the periodic, inverse scattering transform. Math. Comput. Simul. 82(6), 1069–1078 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crighton D.: Applications of KdV. Acta Appl. Math. 39(1–3), 39–67 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids (2014). doi: 10.1177/1081286513509811
  13. 13.
    Engelbrecht J.: Nonlinear wave processes of deformation in solids. Pitman, London (1983)zbMATHGoogle Scholar
  14. 14.
    Engelbrecht J.: Beautiful dynamics. Proc. Estonian Acad. Sci. Phys. Math. 44(1), 108–119 (1995)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Engelbrecht J.: Nonlinear Wave Dynamics: Complexity and Simplicity. Kluwer, Dordrecht (1997)CrossRefzbMATHGoogle Scholar
  16. 16.
    Engelbrecht J., Salupere A.: On the problem of periodicity and hidden solitons for the KdV model. Chaos 15, 015,114 (2005)CrossRefGoogle Scholar
  17. 17.
    Engelbrecht J., Pastrone F., Braun M., Berezovski A.: Hierarchies of waves in nonclassical materials. In: Delsanto, P.P. (ed.) The Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evaluations and Ultrasonics., pp. 29–48. Springer, Berlin (2006)CrossRefGoogle Scholar
  18. 18.
    Engelbrecht J., Salupere A., Tamm K.: Waves in microstructured solids and the Boussinesq paradigm. Wave Motion 48(8), 717–726 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Eringen A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  21. 21.
    Fornberg B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  22. 22.
    Giovine P., Oliveri F.: Dynamics and wave propagation in dilatant granular materials. Meccanica 30, 341–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hansen P., Lonngren K.: On the prediction of the number of solitons excited by an arbitrary potential: an observation from inverse scattering. Phys. D 68(1), 12–17 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ilison, L.: Solitons and Solitary Waves in Hierarchical Korteweg–de Vries Type Systems. Ph.D. thesis, Tallinn University of Technology (2009)Google Scholar
  25. 25.
    Ilison L., Salupere A.: Propagation of sech2-type solitary waves in hierarchical KdV-type systems. Math. Comput. Simul. 79, 3314–3327 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ilison O., Salupere A.: Propagation of sech2-type solitary waves in higher-order KdV-type systems. Chaos Soliton Fract. 26(2), 453–465 (2005)CrossRefzbMATHGoogle Scholar
  27. 27.
    Janno J., Engelbrecht J.: An inverse solitary wave problem related to microstructured materials. Inverse Probl. 21, 2019–2034 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Karpman V.I.: Radiation by solitons due to higher-order dispersion. Phys. Rev. E 47(3), 2073–2082 (1993)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Korn G.A., Korn T.M.: Mathematical Handbook for Scientists and Engineers. Dover publications Inc., New York (2000)Google Scholar
  30. 30.
    Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)CrossRefzbMATHGoogle Scholar
  31. 31.
    Maugin G.A.: Nonlinear Waves in Elastic Crystals. Oxford Univ. Press, Oxford (1999)zbMATHGoogle Scholar
  32. 32.
    Maugin G.A.: Solitons in elastic solids (1938–2010). Mech. Res. Commun. 38(5), 341–349 (2011)CrossRefzbMATHGoogle Scholar
  33. 33.
    Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Porubov A., Maugin G.: Longitudinal strain solitary waves in presence of cubic non-linearity. Int. J. Non-linear Mech. 40(7), 1041–1048 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rand, D., Steiglitz, K.: Computing with solitons. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, vol. 2, pp. 1376–1395. Springer, New York (2009)Google Scholar
  36. 36.
    Randrüüt, M., Braun M.: On one-dimensional solitary waves in microstructured solids. Wave Motion {\bf 47uml;, 217–230 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rosi G., Giorgio I., Eremeyev V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z Angew Math. Mech. 93(12), 914–927 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Salupere A.: The pseudospectral method and discrete spectral analysis. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods, pp. 301–333. Springer, Berlin (2009)CrossRefGoogle Scholar
  39. 39.
    Salupere A., Ilison L.: Numerical simulation of interaction of solitons and solitary waves in granular materials. In: Ganghoffer, J., Pastrone, F. (eds.) Mechanics of Microstructured Solids 2: Cellular Materials, Fibre Reinforced Solids and Soft Tissues, Lecture Notes in Applied and Computational Mechanics, vol. 50, pp. 21–28. Springer, Berlin (2010)CrossRefGoogle Scholar
  40. 40.
    Salupere A., Maugin G.A., Engelbrecht J.: Korteweg–de Vries soliton detection from a harmonic input. Phys. Lett. A 192(1), 5–8 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Salupere A., Maugin G.A., Engelbrecht J., Kalda J.: On the KdV soliton formation and discrete spectral analysis. Wave Motion 23(1), 49–66 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Salupere A., Engelbrecht J., Ilison O., Ilison L.: On solitons in microstructured solids and granular materials. Math. Comput. Simul. 69(5–6), 502–513 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Takaoka M.: Pole distribution and steady pulse solution of the fifth order Korteweg–de Vries equation. J. Phys. Soc. Jpn. 58(1), 73–81 (1989)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zabusky N.J.: Nonlinear lattice dynamics and energy sharing. J. Phys. Soc. Jpn. 26(suppl.), 196–202 (1969)Google Scholar
  45. 45.
    Zabusky N.J.: Computational synergetics and mathematical innovation. J. Comput. Phys. 43(2), 195–249 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zabusky N.J., Kruskal M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrus Salupere
    • 1
    Email author
  • Martin Lints
    • 1
  • Jüri Engelbrecht
    • 1
  1. 1.CENSInstitute of Cybernetics at Tallinn University of TechnologyTallinnEstonia

Personalised recommendations