Archive of Applied Mechanics

, Volume 84, Issue 9–11, pp 1249–1261 | Cite as

Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature

  • Arkadi BerezovskiEmail author
  • Jüri Engelbrecht
  • Peter Ván
Special Issue


Prediction of the thermoelastic behavior of microstructured materials suggests a more general description of thermal processes in addition to the generalized continuum description extending the conventional continuum mechanics for incorporating intrinsic microstructural effects. Double dual internal variables are introduced in order to couple inertial microstructural effects like microdeformation and diffusive microstructural effects like microtemperature. The full coupled system of governing equations provides a complete extension of the classical thermoelasticity theory onto the case of microstructured solids.


Thermoelasticity Microstructure Microdeformation Microtemperature Dual internal variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlson, D.E.: Linear thermoelasticity. In: Truesdell, C.A. (ed.) Handbuch der Physik, vol. VIa/2:297–345. Springer, Berlin (1972)Google Scholar
  2. 2.
    Suhubi, E.S.: Thermoelastic solids. In: Eringen, A.C. (ed.) Continuum Physics, Vol. II, Chapter 2, pp. 173–265. Academic Press, New York (1975)Google Scholar
  3. 3.
    Nowacki W.: Thermoelasticity, 2nd edn. Pergamon Press, Oxford and P.W.N., Warsaw (1986)zbMATHGoogle Scholar
  4. 4.
    Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple microelastic solids I & II. Int. J. Eng. Sci. 2:189–203, 389–404 (1964)Google Scholar
  6. 6.
    Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Joseph D.D., Preziosi L.: Addendum to the paper “Heat waves”. Rev. Mod. Phys. 62, 375–391 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chandrasekharaiah D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)CrossRefGoogle Scholar
  9. 9.
    Ignaczak J., Ostoja-Starzewski M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  10. 10.
    Straughan B.: Heat Waves. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cardona J.-M., Forest S., Sievert R.: Towards a theory of second grade thermoelasticity. Extracta Math. 14, 127–140 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Forest S., Amestoy M.: Hypertemperature in thermoelastic solids. Comptes Rendus Mecanique 336, 347–353 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Grot R.A.: Thermodynamics of a continuum with microstructure. Int J. Eng. Sci. 7, 01–814 (1969)CrossRefGoogle Scholar
  14. 14.
    Forest, S.: Micromorphic media. In: Altenbach, H., Eremeyev, V.A. (eds.) Generalized Continua from the Theory to Engineering Applications, pp. 249–299. CISM, Udine (2013)Google Scholar
  15. 15.
    Chen Y., Lee J.D.: Connecting molecular dynamics to micromorphic theory (II). Balance laws. Phys. A 322, 377–392 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1993)Google Scholar
  18. 18.
    Fish J., Chen W.: Higher-order homogenization of initial/boundary-value problem. J. Eng. Mech. 127, 1223–1230 (2001)CrossRefGoogle Scholar
  19. 19.
    Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Meth. Appl. Mech. Eng. 193, 5525–5550 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pindera M.-J., Khatam H., Drago A.S., Bansal Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. Part B 40, 349–378 (2009)CrossRefGoogle Scholar
  21. 21.
    Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Baczynski Z.F.: Dynamic thermoelastic processes in microperiodic composites. J. Therm. Stress. 26, 55–66 (2003)CrossRefGoogle Scholar
  23. 23.
    Parnell W.J.: Coupled thermoelasticity in a composite half-space. J. Eng. Math. 56, 1–21 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Özdemir I., Brekelmans W.A.M., Geers M.G.D.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods Appl. Mech. Eng. 198, 602–613 (2008)CrossRefzbMATHGoogle Scholar
  25. 25.
    Fish J., Filonova V., Kuznetsov S.: Micro-inertia effects in nonlinear heterogeneous media. Int. J. Numer. Meth. Eng. 91, 1406–1426 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mariano, P.M.:Multifield theories in mechanics of solids. In: van der Giessen, E., Wu, T.Y. (eds.) Advances in Applied Mechanics, vol. 38, pp. 1–93 (2002)Google Scholar
  27. 27.
    Mariano P.M., Stazi F.L.: Computational aspects of the mechanics of complex materials. Arch. Comput. Methods Eng. 12, 391–478 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)CrossRefGoogle Scholar
  29. 29.
    Maugin G.A., Muschik W.: Thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)zbMATHGoogle Scholar
  30. 30.
    Horstemeyer M.F., Bammann D.J.: Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26, 1310–1334 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Ván P., Berezovski A., Engelbrecht J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Internal variables and generalized continuum theories. In: Steinmann, P. (ed.) IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics, vol. 17, pp. 149–158. Springer, IUTAM Bookseries (2009)Google Scholar
  33. 33.
    Berezovski A., Engelbrecht J., Maugin G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81, 229–240 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Berezovski A., Engelbrecht J., Salupere A., Tamm K., Peets T., Berezovski M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50, 1981–1990 (2013)CrossRefGoogle Scholar
  35. 35.
    Berezovski A., Engelbrecht J., Maugin G.A.: Thermoelasticity with dual internal variables. J. Therm. Stress. 34, 413–430 (2011)CrossRefGoogle Scholar
  36. 36.
    Engelbrecht, J., Berezovski, A.: Internal structure and internal variables in solids. J. Mech. Mater. Struct. 7–10, 983–996 (2012)Google Scholar
  37. 37.
    Berezovski, A., Berezovski, M.: Influence of microstructure on thermoelastic wave propagation. Acta Mech. 224, 2623–2633 (2013)Google Scholar
  38. 38.
    Berezovski, A., Engelbrecht, J.: Thermoelastic waves in solids with microstructure: dual internal variables approach. J. Coupled Syst. Multiscale Dyn. 1, 112–119 (2013)Google Scholar
  39. 39.
    Ván, P., Berezovski, A., Papenfuss, C.: Thermodynamic foundations of generalized mechanics. Cont. Mech. Thermodyn. 26, 403–420 (2014)Google Scholar
  40. 40.
    Capriz G.: Continua with Microstructure. Springer, Heidelberg (1989)CrossRefzbMATHGoogle Scholar
  41. 41.
    Ván, P.: Weakly nonlocal non-equilibrium thermodynamics–variational principles and Second Law. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 153–186, Springer, Berlin (2009)Google Scholar
  42. 42.
    Gyarmati I.: Non-equilibrium Thermodynamics: Field Theory and Variational Principles. Springer, Berlin (1970)CrossRefGoogle Scholar
  43. 43.
    Matolcsi T., Ván, P., Verhás, J.: Fundamental problems of variational principles: objectivity, symmetries and construction. In: Sieniutycz, S., Farkas, H. (eds.) Variational and Extremum Principles in Macroscopic Problems, pp. 57–74. Elsevier, Amsterdam (2005)Google Scholar
  44. 44.
    Dell’Isola, F., Gavrilyuk, S. (eds.): Variational Models and Methods in Solid and Fluid Mechanics. Springer, Wien-New York (2011) (CISM Course, Udine)Google Scholar
  45. 45.
    Dell’Isola F., Rosa L., Woźniak C.z.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Maugin G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75, 723–738 (2006)CrossRefzbMATHGoogle Scholar
  47. 47.
    Ván P.: Exploiting the second law in weakly nonlocal continuum physics. Period. Polytech. Ser. Mech. Eng. 49, 79–94 (2005)Google Scholar
  48. 48.
    Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)Google Scholar
  49. 49.
    Maugin G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192, 1990 (1990)CrossRefGoogle Scholar
  50. 50.
    Cross M.C., Hohenberg P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1106 (1993)CrossRefGoogle Scholar
  51. 51.
    Gurtin M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Onsager L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arkadi Berezovski
    • 1
    Email author
  • Jüri Engelbrecht
    • 1
  • Peter Ván
    • 2
  1. 1.Centre for Nonlinear StudiesInstitute of Cybernetics at Tallinn University of TechnologyTallinnEstonia
  2. 2.Wigner Research Centre for PhysicsInstitute of Particle and Nuclear PhysicsBudapestHungary

Personalised recommendations