Advertisement

Archive of Applied Mechanics

, Volume 84, Issue 1, pp 133–148 | Cite as

Micromechanical estimate of the elastic properties of the coherent domains in pyrolytic carbon

  • S. Lin
  • T.-A. Langhoff
  • T. Böhlke
Original

Abstract

On the nanoscale, the microstructure of pyrolytic carbon (PyC) is constituted by an ensemble of graphene planes, which manifest themselves as lattice fringes in high-resolution transmission electron microscope images. This microstructure can be also considered by an aggregate of so-called coherent domains consisting of stacks of graphene planes with a common unit normal vector. In order to homogenize the elastic behavior of PyC on the micro-level, image processing techniques are used to detect the coherent domains. Subsequently, the domain orientation distribution function (DODF) is modeled by means of a von Mises-Fisher distribution. The main objective of the present paper is to estimate the elastic properties of the coherent domains of the PyC microstructure. Moreover, the Hashin-Shtrikman bounds for the elastic properties can be determined by taking into account the DODF and by applying a nonlinear averaging procedure of the spatially dependent deviations of the local elastic properties. The elastic properties of the coherent domains are estimated by an inverse parameter identification of the Hashin-Shtrikman homogenization method by using effective elastic properties. The latter ones have been obtained based on an Fourier-based image processing algorithm and the orientation distribution function of the graphene planes in a recent paper (Böhlke et al. in Z Angew Math Mech, 2012).

Keywords

Pyrolytic carbon Coherent domains Elastic properties Homogenization Image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bamler, R.: Mehrdimensionale lineare Systeme. Nachrichtentechnik 20, 19–25 (1989)Google Scholar
  2. 2.
    Basu, D.: Statistical information and likelihood. Lecture Notes in Statistics, vol. 45. Springer, Berlin (1988)Google Scholar
  3. 3.
    Beckenbaugh R.D.: Die Arthroplastik des Metakarpophalangealgelenkes mit Pyrocarbonimplantaten. Der Orthopäde 32(9), 794 (2003)CrossRefGoogle Scholar
  4. 4.
    Blakslee O.L., Proctor D.G., Seldin E.J., Spence G.B., Weng T.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373–3382 (1970)CrossRefGoogle Scholar
  5. 5.
    Böhlke T., Brüggemann C.: Graphical representation of the generalized Hooke’s law. Technische Mechanik 21(2), 145–158 (2001)Google Scholar
  6. 6.
    Böhlke T., Jöchen K., Langhoff T.-A.: Homogenization of linear elastic properties of silicon nitride. PAMM 8(1), 10535–10536 (2008)CrossRefGoogle Scholar
  7. 7.
    Böhlke T., Jöchen K., Piat R., Langhoff T.-A., Tsukrov I., Reznik B.: Elastic properties of pyrolytic carbon with axisymmetric textures. Technische Mechanik 30, 343–353 (2010)Google Scholar
  8. 8.
    Böhlke, T., Langhoff, T.-A., Lin, S., Gross, T.: Homogenization of the elastic properties of pyrolytic carbon based on an image processing technique. Z. Angew. Math. Mech. 93(5), 313–328 (2012)Google Scholar
  9. 9.
    Bosak, A., Krisch, M.: Elasticity of single-crystalline graphite: Inelastic X-ray scattering study. Phys. Rev. B 75(153408), 1–4 (2007)Google Scholar
  10. 10.
    Bourrat X.: Electrically conductive grades of carbon black: structure and properties. Carbon 31(2), 287–302 (1993)CrossRefGoogle Scholar
  11. 11.
    De Pauw V., Reznik B., Kalhöfer S., Gerthsen D., Hu Z., Hüttinger K.: Texture and nanostructure of pyrocarbon layers deposited on planar substrates in a hot-wall reactor. Carbon 41, 71–77 (2003)CrossRefGoogle Scholar
  12. 12.
    Dederichs P.H., Zeller R.: Variational treatment of the elastic constants of disordered materials. Z. Physik A 259, 103–116 (1973)Google Scholar
  13. 13.
    Drach A., Drach I., Tsukrov I.: Characterization and statistical modeling of irregular porosity in carbon/carbon composites based on X-Ray microtomography. Z. angew. Math. Mech. 93(5), 346–366 (2012)Google Scholar
  14. 14.
    Fitzer E., Manocha L.: Carbon Reinforcements and Carbon/Carbon Composites. Springer, Berlin (1998)CrossRefGoogle Scholar
  15. 15.
    Gebert J., Reznik B., Piat R., Viering B., Weidenmann K., Deutschmann O.: Elastic constants of high-texture pyrolytic carbon measured by ultrasound phase spectroscopy. Carbon 48, 3635–3658 (2010)CrossRefGoogle Scholar
  16. 16.
    Gross T., Nguyen K., Buck M., Timoshchuk N., Tsukrov I., Reznik B., Piat R., Böhlke T.: Tension-compression anisotropy of in-plane elastic modulus for pyrolytic carbon. Carbon 49, 2141–2161 (2011)CrossRefGoogle Scholar
  17. 17.
    Guellali, M., Oberacker, R., Hoffmann, M.J.: Influence of heat treatment on microstructure and properties of highly textured pyrocarbons deposited during CVD at about 1100 °C and above 2000 °C. Compos. Sci. Technol. 68, 1122–1130 (2008)Google Scholar
  18. 18.
    Harris P.J.F.: New perspectives on the structure of graphitic carbons. Solid State Mater. Sci. 30, 235–253 (2005)Google Scholar
  19. 19.
    Herbell T., Eckel A.: Ceramics for rocket engine components. Aerosp. Eng. 11(12), 21–23 (1991)Google Scholar
  20. 20.
    Kurz L., Hafed M.: Analysis of Variance in Statistical Image Processing. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  21. 21.
    Li A., Zhang S., Reznik B., Lichtenberg S., Schoch G., Deutschmann O.: Chemistry and kinetics of CVD of pyrolytic carbon from ethanol. Proc. Combust. Inst. 33, 1843–1850 (2010)CrossRefGoogle Scholar
  22. 22.
    Lin S., Böhlke T., Langhoff T.-A.: Estimate of the domain orientation distribution function and the thermoelastic properties of pyrolytic carbon based on an image processing technique. PAMM 11, 537–538 (2011)CrossRefGoogle Scholar
  23. 23.
    López-Honorato E., Meadows P.J., Xiao P.: Fluidized bed chemical vapor deposition of pyrolytic carbon-i. effect of deposition conditions on microstructure. Carbon 47, 396–410 (2009)CrossRefGoogle Scholar
  24. 24.
    Michel K.H., Verberck B.: Theory of the elastic constants of graphite and graphene. Phys. Status Solidi (b) 245(10), 2177–2180 (2008)CrossRefGoogle Scholar
  25. 25.
    Nadeau J., Ferrari M.: On optimal zeroth-order bounds with application to Hashin-Shtrikman bounds and anisotropy parameters. Int. J. Solids Struct. 38, 7945–7965 (2001)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ojala T., Pietikäinen M.: Unsupervised texture segmentation using feature distributions. Pattern Recognit. 32(3), 477–486 (1999)CrossRefGoogle Scholar
  27. 27.
    Palotás A.B., Rainey L.C., Feldermann C.J., Sarofim A.F., Vander Sande J.B.: Soot morphology: an application of image analysis by high-resolution transmission electron microscopy. Microsc. Res. Tech. 33, 266–278 (1996)CrossRefGoogle Scholar
  28. 28.
    Piat R., Böhlke T., Deutschmann O., Dietrich S., Gebert J.-M., Gross T., Li A., Reznik B., Stasiuk G., Tsukrov I., Wanner A.: Numerical studies of the influence of the porosity on macroscopic elastic properties of carbon/carbon composites. PAMM 10, 719–720 (2010)CrossRefGoogle Scholar
  29. 29.
    Reznik B., Gerthsen D., Zhang W., Hüttinger K.: Texture changes in the matrix of an infiltrated in a carbon fiber felt studied by polarized light microscopy and selected area electron diffraction. Carbon 41(2), 376–380 (2003)CrossRefGoogle Scholar
  30. 30.
    Reznik B., Hüttinger K.: On the terminology for pyrolytic carbon. Carbon 40, 617–636 (2002)CrossRefGoogle Scholar
  31. 31.
    Sokal, R., Rohlf, F.: Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. Freeman: New York, NY (2000)Google Scholar
  32. 32.
    Tressaud A., Chambon M., Gupta V., Flandrois S., Bahl O.: Fluorine-intercalated carbon fibers III a transmission electron microscopy study. Carbon 33(9), 1339–1345 (1995)CrossRefGoogle Scholar
  33. 33.
    Vander Wal, R.L., Tomasek, A.J., Street, K., Hull, D.R., Thompson, W.K.: Carbon nanostructure examined by lattice fringe analysis of high-resolution transmission electron microscopy images. J. Nanopart. Res. 6, 555–568 (2004)Google Scholar
  34. 34.
    Vignoles, G., Langlais, F., Descamps, C., Mouchon, A., Le Poche, H., reuge, N., Bertrand, N.: CVD and CVI of pyrocarbon from various precursors. Surf. Coat. Technol. 188–189, 241–249 (2004)Google Scholar
  35. 35.
    Zhang, W., Li, A., Reznik, B., Deutschmann, O.: Thermal expansion of pyrolytic carbon with various textures. Z. angew. Math. Mech. 93(5), 338–366 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Chair for Continuum Mechanics, Department of Mechanical Engineering, Institute of Engineering MechanicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations