Archive of Applied Mechanics

, Volume 83, Issue 6, pp 875–888 | Cite as

Age-related changes in longitudinal prestress in human abdominal aorta

  • Lukas Horny
  • Tomas Adamek
  • Rudolf Zitny


Studies on the influence of aging on the longitudinal mechanical response of elastic arteries are rare, though longitudinal behavior may have a significant effect on pressure pulse transmission. Our study was designed to elucidate how aging is reflected in changes of the longitudinal prestress, prestretch, and pretension force. The study involved ten human samples (six female and four male) of the abdominal aorta with longitudinal prestretch determined in autopsy. Cylindrical samples underwent a longitudinal elongation test in order to estimate the force necessary to attain the in situ length and to determine the corresponding axial prestress. The elastic modulus was estimated employing hyperelastic limiting chain extensibility model. It was found that pretension force, longitudinal prestress, and prestretch are negatively correlated with age. The decreased longitudinal force necessary to obtain the in situ length suggested that the decrease in the prestress occurs not only due to the age-related increase in the cross-section area. Since elastin is the main constituent responsible for bearing the prestretch, this suggests that the observed decrease in the longitudinal prestress and prestretch reflects aging-induced damage to the elastin. Finally, constitutive modeling showed that limiting chain extensibility is a concept that is suitable for describing the aging effect.


Abdominal aorta Aging Arteriosclerosis Biomechanics Elasticity Prestrain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

419_2012_723_MOESM1_ESM.xls (66 kb)
ESM 1 (XLS 66 kb)


  1. 1.
    Horny L., Adamek T., Gultova E., Zitny R., Vesely J., Chlup H., Konvickova S.: Correlations between age, prestrain, diameter and atherosclerosis in the male abdominal aorta. J. Mech. Behav. Biomed. Mater. 4, 2128–2132 (2011). doi: 10.1016/j.jmbbm.2011.07.011 CrossRefGoogle Scholar
  2. 2.
    Learoyd B.M., Taylor M.G.: Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18, 278–292 (1966)CrossRefGoogle Scholar
  3. 3.
    Dobrin P.B., Doyle J.M.: Vascular smooth muscle and the anisotropy of dog carotid artery. Circ. Res. 27, 105–119 (1970)CrossRefGoogle Scholar
  4. 4.
    Schulze-Bauer C.A.J., Morth C., Holzapfel G.A.: Passive biaxial mechanical response of aged human iliac arteries. J. Biomech. Eng. 125, 395–406 (2003). doi: 10.1115/1.1574331 CrossRefGoogle Scholar
  5. 5.
    Sommer G., Regitnig P., Költringer L., Holzapfel G.A.: Biaxial mechanical properties of intact and layer-disected human carotid arteries at physiological and supraphysiological loadings. Am. J. Physiol. Heart Circ. Physiol. 298, 898–912 (2010). doi: 10.1152/ajpheart.00378.2009 CrossRefGoogle Scholar
  6. 6.
    Han H.C., Ku D.N., Vito R.P.: Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31, 403–411 (2003). doi: 10.1114/1.1561291 CrossRefGoogle Scholar
  7. 7.
    Humphrey J.D., Eberth J.F., Dye W.W., Gleason R.L.: Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42, 1–8 (2009). doi: 10.1016/j.jbiomech.2008.11.011 CrossRefGoogle Scholar
  8. 8.
    Jackson Z.S., Gotlieb A.I., Langille B.L.: Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90, 918–925 (2002). doi: 10.1161/01.RES.0000016481.87703.CC CrossRefGoogle Scholar
  9. 9.
    Jackson Z.S., Dajnowiec D., Gotlieb A.I., Langille B.L.: Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thromb. Vasc. Biol. 25, 957–962 (2005). doi: 10.1161/01.ATV.0000161277.46464.11 CrossRefGoogle Scholar
  10. 10.
    Lee Y.-U., Drury-Stewart D., Vito R.P., Han H.-C.: Morphologic adaptation of arterial endothelial cells to longitudinal stretch in organ culture. J. Biomech. 41, 3274–3277 (2008). doi: 10.1016/j.jbiomech.2008.08.016 CrossRefGoogle Scholar
  11. 11.
    Davis N.P., Han H.C., Wayman B., Vito R.: Sustained axial loading lengthens arteries in organ culture. Ann. Biomed. Eng. 33, 867–877 (2005). doi: 10.1007/s10439-005-3488-x CrossRefGoogle Scholar
  12. 12.
    Dobrin P.B., Schwarcz T.H., Mirkvicka R.: Longitudinal retractive force in pressurized dog and human arteries. J. Surg. Res. 48, 116–120 (1990). doi: 10.1016/0022-4804(90)90202-D CrossRefGoogle Scholar
  13. 13.
    Lee A.Y., Han B., Lamm S.D., Fierro C.A., Han H.-C.: Effects of elastin degradation and surrounding matrix support on artery stability. Am. J. Physiol. Heart Circ. Physiol. 302, 873–884 (2012). doi: 10.1152/ajpheart.00463.2011 CrossRefGoogle Scholar
  14. 14.
    Carta L., Wagenseil J.E., Knutsen R.H., Mariko B., Faury G., Davis E.C. et al.: Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb. Vasc. Biol. 29, 2083–2089 (2009). doi: 10.1161/ATVBAHA.109.193227 CrossRefGoogle Scholar
  15. 15.
    Wagenseil J.E., Mecham R.P.: Elastin in large artery stiffness and hypertension. J. Cardiovasc. Trans. Res. 5, 264–273 (2012). doi: 10.1007/s12265-012-9349-8 CrossRefGoogle Scholar
  16. 16.
    Langewouters G.J., Wesseling K.H., Goedhard W.J.A.: The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech. 17, 425–435 (1984)CrossRefGoogle Scholar
  17. 17.
    Han H.C., Fung Y.C.: Longitudinal strain of canine and porcine aortas. J. Biomech. 28, 637–641 (1995). doi: 10.1016/0021-9290(94)00091-H CrossRefGoogle Scholar
  18. 18.
    Horny L., Adamek T., Chlup H., Zitny R.: Age estimation based on a combined arteriosclerotic index. Int. J. Leg. Med. 126, 321–326 (2012). doi: 10.1007/s00414-011-0653-7 CrossRefGoogle Scholar
  19. 19.
    Horny L., Adamek T., Vesely J., Chlup H., Zitny R., Konvickova S.: Age-related distribution of longitudinal pre-strain in abdominal aorta with emphasis on forensic application. Forensic. Sci. Int. 214, 18–22 (2012). doi: 10.1016/j.forsciint.2011.07.007 CrossRefGoogle Scholar
  20. 20.
    Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ogden R.W., Saccomandi G.: Introducing mesoscopic information into constitutive equations for arterial walls. Biomech. Model Mechanobiol. 6, 333–344 (2007). doi: 10.1007/s10237-006-0064-8 CrossRefGoogle Scholar
  22. 22.
    Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000). doi: 10.1023/A:1010835316564 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Watton P.N., Ventikos Y., Holzapfel G.A.: Modelling the mechanical response of elastin for arterial tissue. J. Biomech. 42, 1320–1325 (2009). doi: 10.1016/j.biomech.2009.03.012 CrossRefGoogle Scholar
  24. 24.
    Svensjö S., Björck M., Gürtelschmid M., Gidlund K.D., Hellberg A., Wanhainen A.: Low prevalence of abdominal aortic aneurysm among 65-year-old swedish men indicates a change in the epidemiology of the disease. Circulation 124, 1118–1123 (2011). doi: 10.1161/CIRCULATIONAHA.111.030379 CrossRefGoogle Scholar
  25. 25.
    Collective of authors: A comparative study of the prevalence of abdominal aortic aneurysms in the United Kingdom, Denmark, and Australia. J. Med. Screen. 8, 46–50 (2001). doi: 10.1136/jms.8.1.46
  26. 26.
    Czech Statistical Office (2011) Annual demographical report.
  27. 27.
    Greenwald S.E.: Ageing of the conduit arteries. J. Pathol. 211, 157–172 (2007). doi: 10.1002/path.2101 CrossRefGoogle Scholar
  28. 28.
    O’Rourke M.F., Hashimoto J.: Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50, 1–13 (2007). doi: 10.1016/j.jacc.2006.12.050 CrossRefGoogle Scholar
  29. 29.
    McEniery C.M., Wilkinson I.B., Avolio A.P.: Age, hypertension and arterial function. Clin. Exp. Pharmacol. Physiol. 34, 665–671 (2007). doi: 10.1111/j.1440-1681.2007.04657.x CrossRefGoogle Scholar
  30. 30.
    Arribas S.M., Hinek A., González M.C.: Elastic fibers and vascular structure in hypertension. Pharmacol. Therap. 111, 771–791 (2006). doi: 10.1016/j.pharmthera.2005.12.003 CrossRefGoogle Scholar
  31. 31.
    Avolio A., Jones D., Tafazzoli-Shadpour M.: Quantification of alternations in structure and function of elastin in the arterial media. Hypertension 32, 170–175 (1998)CrossRefGoogle Scholar
  32. 32.
    Fonck E., Feigl G.G., Fasel J., Sage D., Unser M., Rüfenacht D.A., Stergiopulos N.: Effect of aging on elastin functionality in human cerebral arteries. Stroke 40, 2552–2556 (2009). doi: 10.1161/strokeaha.108.528091 CrossRefGoogle Scholar
  33. 33.
    Jacob M.P.: Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed. Pharmacother. 57, 195–202 (2003). doi: 10.1016/S0753-3322(03)00065-9 CrossRefGoogle Scholar
  34. 34.
    Greenwald S.E., Moore J.E., Rachev A., Kane T.P., Meister J.J.: Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119, 438–444 (1997). doi: 10.1115/1.2798291 CrossRefGoogle Scholar
  35. 35.
    Atkinson J.: Age-related medial elastocalcinosis in arteries: mechanisms, animal models, and physiological consequences. J. Appl. Physiol. 105, 1643–1651 (2008). doi: 10.1152/japplphysiol.90476.2008 CrossRefGoogle Scholar
  36. 36.
    Persy V., D’Haese P.: Vascular calcification and bone disease: the calcification paradox. Trends Mol. Med. 15, 405–416 (2009). doi: 10.1016/j.molmed.2009.07.001 CrossRefGoogle Scholar
  37. 37.
    Konova E., Baydanoff S., Atanasova M., Velkova A.: Age-related changes in the glycation of human aortic elastin. Exp. Gerontol. 39, 249–254 (2004). doi: 10.1016/j.exger.2003.10.003 CrossRefGoogle Scholar
  38. 38.
    Haskett D., Johnson G., Zhou A., Utzinger U., Vande Geest J.: Microstructural and biomechanical alternations of the human aorta as a function of age and location. Biomech. Model. Mechanobiol. 9, 725–736 (2010). doi: 10.1007/s10237-010-0209-7 CrossRefGoogle Scholar
  39. 39.
    Wuyts F.L., Vanhuyse V.J., Langewouters G.J., Decraemer W.F., Raman E.R., Buyle S.: Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40, 1577–1597 (1995)CrossRefGoogle Scholar
  40. 40.
    Gasser T.C., Ogden R.W., Holzapfel G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. Roy. Soc. Interface 3, 15–35 (2006). doi: 10.1098/rsif.2005.0073 CrossRefGoogle Scholar
  41. 41.
    Humphrey J.D., Holzapfel G.A.: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45, 805–814 (2012). doi: 10.1016/j.jbiomech.2011.11.021 CrossRefGoogle Scholar
  42. 42.
    Tsamis A., Rachev A., Stergiopulos N.: A constituent-based model of age-related changes in conduit arteries. Am. J. Physiol. Heart Circ. Physiol. 301, 1286–1301 (2011). doi: 10.1152/ajpheart.00570.2010 CrossRefGoogle Scholar
  43. 43.
    Lillie M.A., Gosline J.M.: Limits to the durability of arterial elastic tissue. Biomaterials 28, 2021–2031 (2007). doi: 10.1016/j.biomaterials.2007.01.016 CrossRefGoogle Scholar
  44. 44.
    Cinthio M., Ahlgren A.R., Bergkvist J., Jansson T., Persson H.W., Lindstrom K.: Longitudinal movements and resulting shear strain of the arterial wall. Am. J. Physiol. Heart Circ. Physiol. 291, 394–402 (2006). doi: 10.1152/ajpheart.00988.2005 CrossRefGoogle Scholar
  45. 45.
    Åstrand H., Stålhand J., Karlsson J., Karlsson M., Sonesson B., Länne T.: In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: effect of age and sex. J. Appl. Physiol. 110, 176–187 (2011). doi: 10.1152/japplphysiol.00579.2010 CrossRefGoogle Scholar
  46. 46.
    Masson I., Beaussier H., Boutouyrie P., Laurent S., Humphrey J.D., Zidi M.: Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans. Biomech. Model. Mechanobiol. 10, 867–882 (2011). doi: 10.1007/s10237-010-0279-6 CrossRefGoogle Scholar
  47. 47.
    Schulze-Bauer C.A.J., Holzapfel G.A.: Determination of constitutive equations for human arteries from clinical data. J. Biomech. 36, 165–169 (2003). doi: 10.1016/S0021-9290(02)00367-6 CrossRefGoogle Scholar
  48. 48.
    Stalhand J.: Determination of human arterial wall parameters from clinical data. Biomech. Model. Mechanobiol. 8, 141–148 (2009). doi: 10.1007/s10237-008-0124-3 CrossRefGoogle Scholar
  49. 49.
    Horgan C.O., Saccomandi G.: A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobiol. 1, 251–266 (2003). doi: 10.1007/s10237-002-0022-z CrossRefGoogle Scholar
  50. 50.
    Destrade M., Ní Annaidh A., Coman C.D.: Bending instabilities of soft biological tissues. Int. J. Solids Struct. 46, 4322–4330 (2009). doi: 10.1016/j.ijsolstr.2009.08.017 zbMATHCrossRefGoogle Scholar
  51. 51.
    Kumar, V., Abbas, A.K., Fausto, N., Aster, J.C.: Robbins and Cotran pathologic basis of disease, 8th edn. Elsevier, Philadelphia (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Third Faculty of MedicineCharles University in PraguePragueCzech Republic

Personalised recommendations