Archive of Applied Mechanics

, Volume 83, Issue 6, pp 849–859 | Cite as

A phase field approach for multivariant martensitic transformations of stable and metastable phases

  • Regina Schmitt
  • Ralf Müller
  • Charlotte Kuhn
  • Herbert M. Urbassek
Original

Abstract

A phase field model approach for multivariant martensitic transformations of stable and metastable phases is introduced. The evolution of the microstructure is examined with respect to elastic energy minimization in which one or two martensitic orientation variants are considered. In this context, the martensitic nucleation behavior is simulated for different activation barriers. Furthermore, the influence of time-dependent external loads on the formation of the different phases is studied. The numerical implementation is performed with finite elements and an implicit time integration scheme.

Keywords

Phase field model Phase transformation Finite elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artemev A., Wang Y., Khachaturyan A.G.: Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses. Acta. Mater. 48, 2503–2518 (2000)CrossRefGoogle Scholar
  2. 2.
    Bartel T., Menzel A., Svendsen B.: Thermodynamic and relaxation based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59, 1004–1019 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen L.Q., Wang Y., Khachaturyan A.G.: Kinetics of tweed and twin formation during an ordering transition in a substitutional solid solution. Philos. Mag. Lett. 65(1), 15–23 (1992)CrossRefGoogle Scholar
  4. 4.
    Cherkaoui M., Berveiller M.: Micromechanical modeling of the martensitic transformation induced plasticity steels. Smart Mater. Struct. 9, 592–603 (2000)CrossRefGoogle Scholar
  5. 5.
    Engin C., Urbassek H.M.: Molecular dynamics investigation of the fcc → bcc phase transformation in Fe. Comput. Mater. Sci. 41, 297–304 (2008)CrossRefGoogle Scholar
  6. 6.
    Entel P., Meyer R., Kadau K.: Molecular dynamics simulations of martensitic transformations. Phil. Mag. B. 80, 183–194 (2000)CrossRefGoogle Scholar
  7. 7.
    Fischer F.D., Berveiller M., Tanaka K., Oberaigner E.R.: Continuum mechanical aspects of phase transformations in solids. Arch. Appl. Mech. 64, 54–85 (1994)MATHGoogle Scholar
  8. 8.
    Gao L.F., Feng X.Q., Gao H.: A phase field method for simulating morphological evolution of vesicles in electric fields. J. Comput. Phys. 228, 4162–4181 (2009)MATHCrossRefGoogle Scholar
  9. 9.
    Hildebrand F., Miehe C.: A regularized sharp interface model for phase transformation accounting for prescribed sharp interface kinetics. Proc. Appl. Math. Mech. 10, 673–676 (2010)CrossRefGoogle Scholar
  10. 10.
    Hildebrand F.E., Miehe C.: Comparison of two bulk energy approaches for the phasefield modeling of two-variant martensitic laminate microstructure. Techn. Mech. 32, 3–20 (2012)Google Scholar
  11. 11.
    Jin Y.M., Artemev A., Khachaturyan A.G.: Three dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulations of \({\zeta_{2}^{\prime}}\) martensite in AuCd alloys. Acta. Mater. 49, 2309–2320 (2001)CrossRefGoogle Scholar
  12. 12.
    Kundin J., Raabe D., Emmerich H.: A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids 59, 2082–2102 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Levitas V.I., Lee D.-W., Preston D.L.: Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int. J. Plast. (2009) doi:10.1016/j.ijplas.2009.08.003
  14. 14.
    Rubini S., Ballone P.: Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni-Al alloys. Phys. Rev. B. 48, 99–111 (1993)CrossRefGoogle Scholar
  15. 15.
    Sandoval L., Urbassek H.M.: Transformation pathways in the solid-solid phase transitions of iron nanowires. Appl. Phys. Lett. 95, 191909 (2009)CrossRefGoogle Scholar
  16. 16.
    Schrade D., Mueller R., Xu B.X., Gross D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196, 4365–4374 (2007)MATHCrossRefGoogle Scholar
  17. 17.
    Schrade D., Xu B.X., Müller R., Gross D: On phase field modeling of ferroelectrics: parameter identification and verification. SMASIS 2008(1), 299–306 (2008)Google Scholar
  18. 18.
    Schrade D., Müller R., Gross D.: Parameter identification in phase field models for ferroelectrics. Proc. Appl. Math. Mech. 9, 369–370 (2009)CrossRefGoogle Scholar
  19. 19.
    Wang Y., Khachaturyan A.G.: Three-dimensional field model and computer modeling of martensitic transformations. Acta. Mater. 45(2), 759–773 (1997)CrossRefGoogle Scholar
  20. 20.
    Wechsler M.S., Lieberman D.S., Read T.: On the theory of the formation of martensite. Trans. AIME 197, 1503–1515 (1953)Google Scholar
  21. 21.
    Yamanaka A., Takaki T., Tomita Y.: Elastoplastic phase-field simulation of self- and plastic accommodations in cubic → tetragonal martensitic transformation. Mater. Sci. Eng. A. 491, 378–384 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhang W., Jin Y.M., Khachaturyan A.G.: Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys. Acta. Mater. 55, 565–574 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Regina Schmitt
    • 1
  • Ralf Müller
    • 1
  • Charlotte Kuhn
    • 1
  • Herbert M. Urbassek
    • 2
  1. 1.Institute of Applied MechanicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Physics Department and Research Center OPTIMASUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations