Archive of Applied Mechanics

, Volume 83, Issue 5, pp 709–721

Transient thermal elastic fracture of a piezoelectric cylinder specimen

Original

Abstract

A finite piezoelectric cylinder with an embedded penny-shaped crack is investigated for a thermal shock load on the outer surface of the cylinder. The theory of linear electro-elasticity is applied to solve the transient temperature field and the associated thermal stresses and electrical displacements without crack. These thermal stresses and electrical displacements are added to the surfaces of the crack to form an electromechanical coupling and mixed mode boundary-value problem. The electrically permeable crack face boundary condition assumption is used, and the thermal stress intensity factor and electrical displacement intensity factor at the crack border are evaluated. The thermal shock resistance of the piezoelectric cylinder is evaluated for the analysis of piezoelectric material failure in practical engineering applications.

Keywords

Thermal shock resistance Piezoelectric materials Fracture mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ootao Y., Tanigawa Y.: Three-dimensional transient piezothermoelasticity in functionally graded rectangular plate bonded to a piezoelectric plate. Int. J. Solids Struct. 37, 4377–4401 (2000)MATHCrossRefGoogle Scholar
  2. 2.
    Bahtui A., Eslami M.R.: Coupled thermoelasticity of functionally graded cylindrical shells. Mech. Res. Commun. 34, 1–18 (2007)MATHCrossRefGoogle Scholar
  3. 3.
    Dai H.L., Wang X.: Stress wave propagation in piezoelectric fiber reinforced laminated composites subjected to thermal shock. Compos. Struct. 74, 51–62 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhang S.J., Yu F.P.: Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)CrossRefGoogle Scholar
  5. 5.
    Niraula O.P., Noda N.: The analysis of thermal stresses in thermopiezoelastic semi-infinite body with an edge crack. Arch. Appl. Mech. 72, 119–126 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Ueda S., Ishii A.: Thermoelectromechanical response of a piezoelectric strip with two parallel cracks of different lengths. J. Therm. Stresses 31, 976–990 (2008)CrossRefGoogle Scholar
  7. 7.
    Ueda S.: Normal cracks in a functionally graded piezoelectric material strip under transient thermal loading. J. Therm. Stresses 34, 431–457 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ueda S.: Transient thermoelectroelastic response of a functionally graded piezoelectric strip with a penny-shaped crack. Eng. Fract. Mech. 75, 1204–1222 (2008)CrossRefGoogle Scholar
  9. 9.
    Feng W.J., Han X., Li Y.S.: Fracture analysis for two-dimensional plane problems of nonhomogeneous magneto-electro-thermo-elastic plates subjected to thermal shock by using the meshless local petrov-galerkin method. Cmes-Comp. Moded. Eng. 48, 1–26 (2009)MathSciNetMATHGoogle Scholar
  10. 10.
    Sladek J., Sladek V., Solek P.: Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG. Int. J. Solids Struct. 47, 1381–1391 (2010)MATHCrossRefGoogle Scholar
  11. 11.
    Sladek J., Sladek V., Solek P.: Dynamic 3D axisymmetric problems in continuously non-homogeneous piezoelectric solids. Int. J. Solids Struct. 45, 4523–4542 (2008)MATHCrossRefGoogle Scholar
  12. 12.
    Sladek J., Sladek V., Zhang C.H.: Application of the MLPG to thermo-piezoelectricity. Cmes-Comp. Moded. Eng. 22, 217–233 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Ishihara M., Noda N.: Control of thermal stress intensity factor in a piezothermoelastic semi-infinite body with an edge crack. Eur. J. Mech. A Solid 24, 417–426 (2005)MATHCrossRefGoogle Scholar
  14. 14.
    Wang B.L., Mai Y.W.: Thermal shock fracture of piezoelectric materials. Philos. Mag. 83, 631–657 (2003)CrossRefGoogle Scholar
  15. 15.
    Wang B.L., Sun Y.G.: Thermal shock strength of a semi-infinite piezoelectric medium. ASME J. Eng. Mater. Technol. 126, 450–456 (2004)CrossRefGoogle Scholar
  16. 16.
    Wang B.L., Mai Y.W.: Strength evaluation of piezoelectric ceramics under transient thermal environments. J. Am. Ceram. Soc. 87, 929–936 (2004)CrossRefGoogle Scholar
  17. 17.
    Saadatfar M., Razavi A.S.: Piezoelectric hollow cylinder with thermal gradient. J. Mech. Sci. Technol. 23, 45–53 (2009)CrossRefGoogle Scholar
  18. 18.
    Sugano Y.: Transient thermal stresses in a transversely isotropic finite circular cylinder due to an arbitrary internal heat generation. Int. J. Eng. Sci. 17, 927–939 (1979)MATHCrossRefGoogle Scholar
  19. 19.
    Hata T.: Thermal shock in a hollow sphere caused by rapid uniform heating. ASME J. Appl. Mech. 58, 64–69 (1991)MATHCrossRefGoogle Scholar
  20. 20.
    Dai H.L., Wang X.: Dynamic focusing effect of piezoelectric fibers subjected to thermal shock. Arch. Appl. Mech. 75, s379–394 (2006)MATHCrossRefGoogle Scholar
  21. 21.
    Dai H.L., Zheng H.Y., Yang L.: Exact electromagnetothermoelastic solution for a transversely isotropic piezoelectric hollow sphere subjected to arbitrary thermal shock. J. Elast. 102, 79–97 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Noda N., Ashida F., Matsunaga Y.: Stress intensity factors for external and penny-shaped cracks in transversely isotropic cylinders subjected to thermal shock. Arch. Appl. Mech. 64, 383–394 (1994)MATHGoogle Scholar
  23. 23.
    Wang B.L.: Transient thermal fracture of a piezoelectric cylinder. J. Therm. Stresses 28, 197–212 (2005)CrossRefGoogle Scholar
  24. 24.
    Han H.C., Wang B.L.: Crack spacing effect for a piezoelectric cylinder under electro-mechanical loading or transient heating. Int. J. Solids Struct. 43, 2126–2145 (2006)MATHCrossRefGoogle Scholar
  25. 25.
    Erdogan F., Rizk A.A.: Fracture of coated plates and shells under thermal-shock. Int. J. Fract. 59, 159–185 (1992)Google Scholar
  26. 26.
    Lin S., Narita F., Shindo Y.: Electroelastic analysis of a piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix. Int. J. Solids Struct. 40, 5157–5174 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Graduate School at ShenzhenHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations