Archive of Applied Mechanics

, Volume 82, Issue 10–11, pp 1303–1311

Shape optimization against buckling of micro- and nano-rods

  • Teodor M. Atanackovic
  • Branislava N. Novakovic
  • Zora Vrcelj
Special Issue

Abstract

In this paper, we analyze elastic buckling of micro- and nano-rods based on Eringen’s nonlocal elasticity theory. By using the Pontryagin’s maximum principle, we determine optimality condition for a rod simply supported at both ends and loaded with axial compressive force only. Thus, the problem that we treat represents a generalization of the classical Clausen problem formulated for Bernoulli–Euler rod theory. Several concrete examples are treated in details, and the increase in buckling load capacity is determined. In solving the problem numerically, we used a first integral of the resulting system of equations, which helped us to monitor error of the numerical procedure. Our results show that nonlocal effects decrease the buckling load of optimally shaped rod. However, nonlocal theory leads to the optimal rod with the cross-sectional area at the rod ends different from zero. This is important property since zero value of the cross-section at the ends, which optimally shaped rod according to Bernoulli–Euler rod theory has, is unacceptable in applications.

Keywords

Nonlocal column Pontryagin’s principle Optimal shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lagrange, J.-L.: Sur la figure des colonnes. In: Serret, M.J.-A. (ed.) Ouveres de Lagrange, vol. 2, pp. 125–170. Gauthier-Villars, Paris (1868)Google Scholar
  2. 2.
    Clausen, T.: Über die Form architektonischer Säulen. Bull. Cl. Physico Math. Acad. St. Pétersbourg 9, 369–380 (1851)Google Scholar
  3. 3.
    Cox S.J.: The shape of the ideal column. Math. Intell. 14, 16–24 (1992)MATHCrossRefGoogle Scholar
  4. 4.
    Seyranian A.P., Privalova O.G.: The Lagrange problem on an optimal column: old and new results. Struct. Multidisc. Optim. 25, 393–410 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Seyranian A.P.: The Lagrange problem on optimal column. Adv. Mech. (Uspekhi Mekhaniki) 2, 45–96 (2003)Google Scholar
  6. 6.
    Keller J.: The shape of the strongest column. Arch. Rat. Mech. Anal. 5, 275–285 (1960)CrossRefGoogle Scholar
  7. 7.
    Tadjbakhsh I., Keller J.B.: Strongest columns and isoperimetric inequalities for eigenvalues. J. Appl. Mech. ASME 29, 159–164 (1962)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Keller J.B., Niordson F.I.: The tallest column. J. Math. Mech. 16, 433–446 (1966)MathSciNetMATHGoogle Scholar
  9. 9.
    Olhoff N., Rasmussen S.H.: On the single and bimodal optimum buckling loads of clamped columns. Int. J. Solids Struct. 13, 605–614 (1977)MATHCrossRefGoogle Scholar
  10. 10.
    Seyranian A.P.: On a problem of Lagrange. Mech. Solids (Mekhanika Tverdogo Tela) 19, 100–111 (1984)MathSciNetGoogle Scholar
  11. 11.
    Masur E.F.: Optimal structural design under multiple eigenvalue constraints. Int. J. Solids Struct. 20, 211–231 (1984)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cox S.J., Overton M.L.: On the optimal design of columns against buckling. SIAM J. Math. Anal. 23, 287–325 (1992)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Atanackovic T.M., Seyranian A.P.: Application of Pontryagin’s principle to bimodal optimization problems. Struct. Multidisc. Optim. 37, 1–12 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATHGoogle Scholar
  15. 15.
    Sudak L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)CrossRefGoogle Scholar
  16. 16.
    Wang C.M., Zhang Y.Y., Ramesh S.S., Kitipornchai S.: Buckling analysis if micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904–3909 (2006)CrossRefGoogle Scholar
  17. 17.
    Lu P., Lee H.P., Lu C., Zhang P.Q.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)MATHCrossRefGoogle Scholar
  18. 18.
    Wang Q., Wang C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18, 075702 (2007)CrossRefGoogle Scholar
  19. 19.
    Challamel N., Wang C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)CrossRefGoogle Scholar
  20. 20.
    Challamel N., Wang C.M.: On lateral-torsional buckling of non-local beams. Adv. J. Math. Mech. 2, 389–398 (2010)MathSciNetGoogle Scholar
  21. 21.
    Babaei H., Shahidi A.R.: Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method. Arch. Appl. Mech. 81, 1051–1062 (2011)CrossRefGoogle Scholar
  22. 22.
    Atanackovic T.M.: Optimal shape of an Elastic rod in flexural-torsional buckling. Z. Angew. Math. Mech. ZAMM 87, 399–405 (2007)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Atanackovic T.M.: Stability Theory of Elastic Rods. World Scientific, River Edge (1997)MATHGoogle Scholar
  24. 24.
    Eringen A.C.: Theory of nonlocal elasticity and some applications. Res. Mech. 21, 313–342 (1987)Google Scholar
  25. 25.
    Grinev V.B., Filippov A.P.: Optimization of Rods with Respect to Spectrum of Eigenvalues. Naukova Dumka, Kiev (1979)Google Scholar
  26. 26.
    Novakovic B.N., Atanackovic T.M.: On the optimal shape of a compressed column subjected to restrictions on the cross-sectional area. Struct. Multidisc. Optim. 43, 683–691 (2011)CrossRefGoogle Scholar
  27. 27.
    Seyranian A.P.: Homogeneous functionals and structural optimization problems. Int. J. Solids Struct. 15, 749–759 (1979)MATHCrossRefGoogle Scholar
  28. 28.
    Vujanovic B.D., Atanackovic T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Boston (2004)MATHCrossRefGoogle Scholar
  29. 29.
    Sage A.P., White C.C.: Optimum System Control. Prentice-Hall, New Jersey (1977)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Teodor M. Atanackovic
    • 1
  • Branislava N. Novakovic
    • 1
  • Zora Vrcelj
    • 2
  1. 1.Department of MechanicsUniversity of Novi SadNovi SadSerbia
  2. 2.Centre for Infrastructure Engineering and Safety, School of Civil and Environmental EngineeringUNSWSydneyAustralia

Personalised recommendations