Advertisement

Archive of Applied Mechanics

, Volume 83, Issue 2, pp 177–191 | Cite as

Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method

  • A. Fallah
  • M. M. AghdamEmail author
  • M. H. Kargarnovin
Original

Abstract

Free vibration analysis of moderately thick rectangular FG plates on elastic foundation with various combinations of simply supported and clamped boundary conditions are studied. Winkler model is considered to describe the reaction of elastic foundation on the plate. Governing equations of motion are obtained based on the Mindlin plate theory. A semi-analytical solution is presented for the governing equations using the extended Kantorovich method together with infinite power series solution. Results are compared and validated with available results in the literature. Effects of elastic foundation, boundary conditions, material, and geometrical parameters on natural frequencies of the FG plates are investigated.

Keywords

Free vibration analysis Functionally graded plate Elastic foundation Extended Kantorovich method Semi-analytical solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qiana L.F., Batra R.C., Chena L.M.: Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Compos. Part B Eng. 35, 685–697 (2004)CrossRefGoogle Scholar
  2. 2.
    Yang J., Shen H.S.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54, 497–508 (2001)CrossRefGoogle Scholar
  3. 3.
    Batra R.C., Jin J.: Natural frequencies of a functionally graded anisotropic rectangular plate. J. Sound. Vib. 282, 509–516 (2004)CrossRefGoogle Scholar
  4. 4.
    Yang J., Shen H.S.: Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environment. J. Sound. Vib. 255, 579–602 (2002)CrossRefGoogle Scholar
  5. 5.
    Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Jorge R.M.N.: Natural frequencies of functionally graded plates by a meshless method. Compos. Struct. 75, 593–600 (2005)CrossRefGoogle Scholar
  6. 6.
    Nguyen T.K., Sab K., Bonnet G.: First-order shear deformation plate models for functionally graded materials. Compos. Struct. 83, 25–36 (2008)CrossRefGoogle Scholar
  7. 7.
    Matsunaga H.: Free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory. Compos. Struct. 82, 499–512 (2008)CrossRefGoogle Scholar
  8. 8.
    Zhu P., Liew K.M.: Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method. Compos. Struct. 93, 2925–2944 (2011)CrossRefGoogle Scholar
  9. 9.
    Vel S.S., Batra R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound. Vib. 272, 703–730 (2004)CrossRefGoogle Scholar
  10. 10.
    Zhong Z., Shang E.T.: Three-dimensional exact analysis of a simply supported functionally graded piezoelectric plate. Int. J. Solid. Struct. 40, 5335–5352 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Zhong Z., Yu T.: Vibration of a simply supported functionally graded piezoelectric rectangular plate. Smart. Mater. Struct. 15, 1404–1412 (2006)CrossRefGoogle Scholar
  12. 12.
    Bhangale R.K., Ganesan N.: Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method. J. Sound. Vib. 294, 1016–1038 (2006)CrossRefGoogle Scholar
  13. 13.
    Malekzadeh P., Karami G.: Vibration of non-uniform thick plates on elastic foundation by differential quadrature method. Eng. Struct. 26, 1473–1482 (2004)CrossRefGoogle Scholar
  14. 14.
    Xiang Y.: Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations. Int. J. Mech. Sci. 45, 1229–1244 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Amini M.H., Soleimani M., Rastgoo A.: Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation. Smart. Mater. Struct. 18, 1–9 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhou D., Cheung Y.K., Lo S.H., Au F.T.K.: Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation. Int. J. Numer. Meth. Eng. 59, 1313–1334 (2004)zbMATHCrossRefGoogle Scholar
  17. 17.
    Malekzadeh P.: Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Compos. Struct. 89, 367–373 (2009)CrossRefGoogle Scholar
  18. 18.
    Yang J., Shen H.S.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54, 497–508 (2001)CrossRefGoogle Scholar
  19. 19.
    Huang Z.Y., Lü C.F., Chen W.Q.: Benchmark solutions for functionally graded thick plates resting on Winkler–Pasternak elastic foundations. Compos. Struct. 85, 95–104 (2008)CrossRefGoogle Scholar
  20. 20.
    Hosseini-Hashemi S.H., Rokni Damavandi Taher H., Akhavan H., Omidi M.: Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model. 34, 1276–1291 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hosseini-Hashemi S.H., Fadaee M., Atashipour S.R.: A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates. Int. J. Mech. Sci. 53, 11–22 (2011)CrossRefGoogle Scholar
  22. 22.
    Hasani Baferani A., Saidi A.R., Ehteshami H.: Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Compos. Struct. 93, 1842–1853 (2011)CrossRefGoogle Scholar
  23. 23.
    Kerr A.D.: An extension of the Kantorovich method. Q. Appl. Math. 26, 219–229 (1968)zbMATHGoogle Scholar
  24. 24.
    Jones R., Milne B.J.: Application of the extended Kantorovich method to the vibration of clamped rectangular plates. J. Sound. Vib. 45, 309–316 (1976)zbMATHCrossRefGoogle Scholar
  25. 25.
    Laura P.A.A., Grossi R.O., Soni S.R.: Free vibrations of a rectangular plate of variable thickness elastically restrained against rotation along three edges and free on the fourth edge. J. Sound. Vib. 62, 493–503 (1979)zbMATHCrossRefGoogle Scholar
  26. 26.
    Shufrin I., Eisenberger M.: Vibration of shear deformable plates with variable thickness first-order and higher-order analyses. J. Sound. Vib. 290, 465–489 (2006)CrossRefGoogle Scholar
  27. 27.
    Fallah, A., Kargarnovin, M.H., Aghdam, M.M.: Free vibration analysis of symmetrically laminated fully clamped skew plates using extended Kantorovich method. Key. Eng. Mat. 471–472,739–744 (2011)Google Scholar
  28. 28.
    Ungbhakorn V., Singhatanadgid P.: Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method. Compos. Struct. 73, 120–128 (2006)CrossRefGoogle Scholar
  29. 29.
    Shufrin I., Eisenberger M.: Vibration of shear deformable plates with variable thickness first-order and higher-order analyses. J. Sound. Vib. 290, 465–489 (2006)CrossRefGoogle Scholar
  30. 30.
    Shufrin I., Rabinovitch O., Eisenberger M.: Buckling of laminated plates with general boundary conditions under combined compression, tension, and shear—A semi-analytical solution. Thin Wall. Struct. 46, 925–938 (2008)CrossRefGoogle Scholar
  31. 31.
    Aghdam M.M., Mohammadi M.: Bending analysis of thick orthotropic sector plates with various loading and boundary conditions. Compos. Struct. 88, 212–218 (2009)CrossRefGoogle Scholar
  32. 32.
    Alijani F., Aghdam M.M.: A semi-analytical solution for stress analysis of moderately thick laminated cylindrical panels with various boundary conditions. Compos. Struct. 89, 543–550 (2009)CrossRefGoogle Scholar
  33. 33.
    Aghdam M.M., Shahmansouri N., Bigdeli K.: Bending analysis of moderately thick functionally graded conical panels. Compos. Struct. 93, 1376–1384 (2011)CrossRefGoogle Scholar
  34. 34.
    Zhao X., Lee Y.Y., Liew K.M.: Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J. Sound. Vib. 319, 918–939 (2009)CrossRefGoogle Scholar
  35. 35.
    Hosseini-Hashemi S.H., Fadaee M., RokniDamavandi Taher H.: Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory. Appl. Math. Model. 35, 708–727 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Lam K.Y., Wang C.M., He X.Q.: Canonical exact solutions for Levy-plates on two parameter foundation using Green’s functions. Eng. Struct. 22, 364–378 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of Mechanical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations