Advertisement

Archive of Applied Mechanics

, Volume 82, Issue 8, pp 1103–1115 | Cite as

On the evolution law for the frozen fraction in linear theories of shape memory polymers

  • Rasa Kazakevic̆iūtė-Makovska
  • Holger Steeb
  • Aycan Ö. Aydin
Special Issue

Abstract

Shape memory properties of thermally responsive polymeric materials are due mainly to a phase transition from the rubbery phase above the transition temperature (glass transition or melting temperature) to the glassy or semicrystalline phase below this temperature. Within constitutive models of shape memory polymers (SMPs), this phase transition is mathematically accounted for by the frozen volume fraction for which a suitable evolution law must be postulated or derived. In this paper, the evolution laws that have been proposed in the literature are examined both from the experimental and from the theoretical point of view. It is found that the predictive capabilities of the phenomenological laws may be improved by admitting involved material constants to depend on parameters such as pre-strain, rate of heating and cooling, and other quantities characterizing thermomechanical cyclic tests. It is next shown that for a wide class of linear constitutive models of SMPs, the evolution law for the frozen volume fraction may be derived in a systematic way from strain and stress profiles experimentally obtained in the standard thermomechanical test.

Keywords

Shape memory polymers Shape memory effect Phase transition Frozen volume fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rousseau I.A.: Challenges of shape memory polymers: a review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 48, 2075–2089 (2008)CrossRefGoogle Scholar
  2. 2.
    Mather P.T., Luo X., Rousseau I.A.: Shape memory polymer research. Ann. Rev. Mater. Res. 39, 445–471 (2009)CrossRefGoogle Scholar
  3. 3.
    Wagermaier W., Kratz K., Heuchel M., Lendlein A.: Characterization methods for shape-memory polymers. Adv. Polym. Sci. 226, 97–145 (2010)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Gall, K., Dunn, M.L., Greenberg, A.R.: Thermomechanics of the shape memory effect in polymers. In: Materials Research Society Symposium Proceedings 855E, Paper: W5.8 (2005)Google Scholar
  5. 5.
    Liu Y., Gall K., Dunn M.L., Greenberg A.R., Diani J.: Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22, 279–313 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chen Y.-C., Lagoudas D.: A constitutive theory for shape memory polymers. Part II: a linearized model for small deformations. J. Mech. Phys. Solids 56, 1766–1778 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Wang Z.D., Li D.F.: Thermomechanical constitution of shape memory polymers. Int. Conf. Comp. Exp. Eng. Sci. 5, 245–253 (2008)Google Scholar
  8. 8.
    Wang Z.D., Li D.F., Xiong Z.Y., Chang R.N.: Modeling thermomechanical behaviors of shape memory polymer. J. App. Polym. Sci. 113, 651–656 (2009)CrossRefGoogle Scholar
  9. 9.
    Siskind, R.D.: Model development for shape memory polymers. PhD theses, North Caroline State University, (2008)Google Scholar
  10. 10.
    Böl M., Reese S.: Micromechanical modelling of shape memory polymers. Adv. Sci. Tech. 54, 137–142 (2008)CrossRefGoogle Scholar
  11. 11.
    Qi H.J., Nguyen T.D., Castro F., Yakacki C.M., Shandas R.: Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J. Mech. Phys. Solids 56, 1730–1751 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Nguyen T.D., Qi H.J., Castro F., Long K.N.: A thermoviscoelastic model for amorphous shape memory polymers: incorporating structural and stress relaxation. J. Mech. Phys. Solids 56, 1730–1751 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Volk, B.: Thermomechanical characterization and modeling of shape memory polymers. MS thesis, Texas A&M University, (2009)Google Scholar
  14. 14.
    Reese S., Böl M., Christ D.: Finite element-based multi-phase modelling of shape memory polymer stents. Comp. Meth. Appl. Mech. Eng. 199, 1276–1286 (2010)zbMATHCrossRefGoogle Scholar
  15. 15.
    Xu W., Li G.: Constitutive modelling of shape memory polymers based self-healing syntactic foam. Int. J. Solids Struct. 47, 1306–1316 (2010)zbMATHCrossRefGoogle Scholar
  16. 16.
    Volk, B.L., Lagoudas, D.C., Maitland, D.J.: Characterizing and modeling free recovery and constraint recovery behavior of a polyurethane shape memory polymer. In: Proceedings of SMASIS2010, Philadelphia (2010)Google Scholar
  17. 17.
    Steeb H., Kazakevic̆iūtė-Makovska R.: Quantification of the evolution of shape storage and recovery in thermally responsive shape memory polymers. Proc. Appl. Math. Mech. 10, 333–334 (2010)CrossRefGoogle Scholar
  18. 18.
    Kazakevic̆iūtė-Makovska, R., Steeb, H.: On the universal relationships in linear theories of shape memory polymers. Smart Mater. Struct. (forthcoming)Google Scholar
  19. 19.
    Kazakevic̆iūtė-Makovska R., Steeb H.: On recoverable strain and stress relationships for shape memory polymer nanocomposites. KGK - Kautschuk Gummi Kunststoffe 6, 24–28 (2011)Google Scholar
  20. 20.
    Ozawa T.: Kinetics of non-isothermal crystallization. Polymer 3, 150–158 (1971)CrossRefGoogle Scholar
  21. 21.
    Bianchi O., Oliveira R.V.B., Fiorio R., Martins J.D.N., Zattera A.J., Canto L.B.: Assessment of Avrami, Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym. Test. 27, 722–729 (2008)CrossRefGoogle Scholar
  22. 22.
    Trachenko K.: The Vogel-Fulcher-Tammann law in the elastic theory of glass transition. J. Non-Cryst. Solids 354, 3903–3906 (2008)CrossRefGoogle Scholar
  23. 23.
    Aydin, A.O.: Comparative study of constitutive models for shape memory polymers. Master thesis, LKM, Ruhr-Universität Bochum (2010)Google Scholar
  24. 24.
    Tobushi H., Hashimoto T., Hayashi S., Yamada E.: Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J. Int. Mater. Syst. Struct. 8, 711–718 (1997)CrossRefGoogle Scholar
  25. 25.
    Liu Y., Gall K., Dunn M.L., Martin L., McCluskey P.: Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Mater. Struct. 12, 947–954 (2003)CrossRefGoogle Scholar
  26. 26.
    Huang, W.M., Yang, B.: Electrical, thermomechanical and shape-memory properties of the PU shape-memory polymer filled with carbon black. In: Leng, J., Du, S. Shape-Memory Polymers and Multifunctional Composites, CRC Press, New York (2010)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rasa Kazakevic̆iūtė-Makovska
    • 1
  • Holger Steeb
    • 1
  • Aycan Ö. Aydin
    • 1
  1. 1.Mechanics-Continuum Mechanics, Ruhr-University BochumBochumGermany

Personalised recommendations