Archive of Applied Mechanics

, Volume 82, Issue 9, pp 1183–1217 | Cite as

Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data



Rubber-like materials consist of chain-like macromolecules that are more or less closely connected to each other via entanglements or cross-links. As an idealisation, this particular structure can be described as a completely random three-dimensional network. To capture the elastic and nearly incompressible mechanical behaviour of this material class, numerous phenomenological and micro-mechanically motivated models have been proposed in the literature. This contribution reviews fourteen selected representatives of these models, derives analytical stress–stretch relations for certain homogeneous deformation modes and summarises the details required for stress tensors and consistent tangent operators. The latter, although prevalently missing in the literature, are indispensable ingredients in utilising any kind of constitutive model for the numerical solution of boundary value problems by iterative approaches like the Newton–Raphson scheme. Furthermore, performance and validity of the models with regard to the classical experimental data on vulcanised rubber published by Treloar (Trans Faraday Soc 40:59–70, 1944) are evaluated. These data are here considered as a prototype or worst-case scenario of highly nonlinear elastic behaviour, although inelastic characteristics are clearly observable but have been tacitly ignored by many other authors.


Rubber-like material Hyperelasticity Phenomenological model Micro-mechanical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Treloar L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)CrossRefGoogle Scholar
  2. 2.
    Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefGoogle Scholar
  3. 3.
    Boyce M.C., Arruda E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)CrossRefGoogle Scholar
  4. 4.
    Lulei, F.: Mikromechanisch motivierte Modelle zur Beschreibung finiter Deformationen gummiartiger Polymere: Physikalische Modellbildung und numerische Simulation. Ph.D. Thesis, University of Stuttgart, Germany (2002)Google Scholar
  5. 5.
    Miehe C., Göktepe S., Lulei F.: A micro-approach to rubber-like materials - Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Göktepe, S.: Micro-macro approaches to rubbery and glassy polymers: predictive micromechanically-based models and simulations. Ph.D. Thesis, University of Stuttgart, Germany (2007)Google Scholar
  7. 7.
    Ogden R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326, 565–584 (1972)MATHCrossRefGoogle Scholar
  8. 8.
    Mooney M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–596 (1940)MATHCrossRefGoogle Scholar
  9. 9.
    Rivlin R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. A 241, 379–397 (1948)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Rivlin R.S.: Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. A Math. Phys. Sci. 195, 463–473 (1949)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Rivlin R.S.: Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. A 242, 173–195 (1949)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Yeoh O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993)CrossRefGoogle Scholar
  13. 13.
    Yeoh O.H., Fleming P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. Polym. Phys. 35, 1919–1931 (1997)CrossRefGoogle Scholar
  14. 14.
    Wu P.D., van der Giessen E.: On improved 3-D non-Gaussian network models for rubber elasticity. Mech. Res. Commun. 19, 427–433 (1992)CrossRefGoogle Scholar
  15. 15.
    Beda T., Chevalier Y.: Hybrid continuum model for large elastic deformation of rubber. J. Appl. Phys. 94, 2701–2706 (2003)CrossRefGoogle Scholar
  16. 16.
    Marckmann G., Verron E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79, 835–858 (2006)CrossRefGoogle Scholar
  17. 17.
    Kaliske M., Heinrich G.: An extended tube-model for rubber elasticity: Statistical mechanical theory and finite element implementation. Rubber Chem. Technol. 72, 602–632 (1999)CrossRefGoogle Scholar
  18. 18.
    Shariff M.H.B.M.: Strain energy function for filled and unfilled rubber-like material. Rubber Chem. Technol. 73, 1–18 (2000)CrossRefGoogle Scholar
  19. 19.
    Bergström J.S., Boyce M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46, 931–954 (1998)MATHCrossRefGoogle Scholar
  20. 20.
    Seibert D.J., Schöche N.: Direct comparison of some recent rubber elasticity models. Rubber Chem. Technol. 73, 366–384 (2000)CrossRefGoogle Scholar
  21. 21.
    Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. A 243, 251–288 (1951)MATHCrossRefGoogle Scholar
  22. 22.
    Hartmann S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001)MATHCrossRefGoogle Scholar
  23. 23.
    Hartmann S., Neff P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40, 2767–2791 (2003)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hartmann S.: Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. Acta Mech. 148, 129–155 (2001)MATHCrossRefGoogle Scholar
  25. 25.
    Hartmann S., Tschöpe T., Schreiber L., Haupt P.: Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur. J. Mech. A-Solid 22, 309–324 (2003)MATHCrossRefGoogle Scholar
  26. 26.
    Haupt P., Sedlan K.: Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling. Arch. Appl. Mech. 71, 89–109 (2001)MATHCrossRefGoogle Scholar
  27. 27.
    Attard M.M., Hunt G.W.: Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41, 5327–5350 (2004)MATHCrossRefGoogle Scholar
  28. 28.
    Valanis K.S., Landel R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 7, 2997–3002 (1967)CrossRefGoogle Scholar
  29. 29.
    Vangerko H., Treloar L.R.G.: The inflation and extension of rubber tube for biaxial strain studies. J. Phys. D Appl. Phys. 11, 1969–1978 (1978)CrossRefGoogle Scholar
  30. 30.
    Chagnon G., Marckmann G., Verron E.: A comparison of the Hart-Smith model with Arruda–Boyce and Gent formulations for rubber elasticity. Rubber Chem. Technol. 77, 724–735 (2004)CrossRefGoogle Scholar
  31. 31.
    Hart-Smith L.J.: Elasticity parameters for finite deformations of rubber like materials. Z. Angew. Math. Phys. 17, 608–626 (1966)CrossRefGoogle Scholar
  32. 32.
    Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Boyce M.C.: Direct comparison of the Gent and Arruda–Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69, 781–785 (1996)CrossRefGoogle Scholar
  34. 34.
    Horgan C.O., Saccomandi G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Horgan C.O., Saccomandi G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Currie P.K.: Comparison of incompressible elastic strain energy functions over the attainable region of invariant space. Math. Mech. Solids 10, 559–574 (2005)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Haines D.W., Wilson W.D.: Strain-energy density function for rubberlike materials. J. Mech. Phys. Solids 27, 345–360 (1979)MATHCrossRefGoogle Scholar
  38. 38.
    Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2001)Google Scholar
  39. 39.
    Miehe C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Numer. Methods Eng. 37, 1981–2004 (1994)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Liu C.H., Hofstetter G., Mang H.A.: 3D finite element analysis of rubber-like materials at finite strains. Eng. Comput. 11, 111–128 (1994)Google Scholar
  41. 41.
    Kaliske M., Rothert H.: On the finite element implementation of rubber-like materials at finite strains. Eng. Comput. 14, 216–232 (1997)CrossRefGoogle Scholar
  42. 42.
    Heinrich G., Kaliske M.: Theoretical and numerical formulation of molecular based constitutive tube-model of rubber elasticity. Comput. Theor. Polym. Sci. 7, 227–241 (1997)CrossRefGoogle Scholar
  43. 43.
    Isihara A., Hashitsume N., Tatibana M.: Statistical theory of rubber-like elasticity. IV. (Two-dimensional stretching). J. Chem. Phys. 19, 1508–1512 (1951)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Gent A.N., Thomas A.G.: Forms for the stored (strain) energy function for vulcanized rubber. J. Polym. Sci. 28, 625–628 (1958)CrossRefGoogle Scholar
  45. 45.
    Swanson S.R.: A constitutive model for high elongation elastic materials. J. Eng. Mater. Trans. ASME 107, 110–115 (1985)CrossRefGoogle Scholar
  46. 46.
    Yeoh O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63, 792–805 (1990)CrossRefGoogle Scholar
  47. 47.
    Carroll M.M.: A strain energy function for vulcanized rubbers. J. Elast. 103, 173–187 (2011)MATHCrossRefGoogle Scholar
  48. 48.
    James H.M., Guth E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11, 455–481 (1943)CrossRefGoogle Scholar
  49. 49.
    Wang M.C., Guth E.: Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144–1157 (1952)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Flory P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Wriggers P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATHGoogle Scholar
  52. 52.
    Treloar L.R.G.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1975)Google Scholar
  53. 53.
    Ogden R.W.: Non-linear Elastic Deformations. Dover, New York (1997)Google Scholar
  54. 54.
    Miehe C.: Computation of isotropic tensor functions. Commun. Numer. Methods Eng. 9, 889–896 (1993)MATHCrossRefGoogle Scholar
  55. 55.
    Reese S., Govindjee S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)MATHCrossRefGoogle Scholar
  56. 56.
    Simo J.C., Taylor R.L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Başar Y., Weichert D.: Nonlinear Continuum Mechanics of Solids. Fundamental Mathematical and Physical Concepts. Springer, Berlin (2000)MATHGoogle Scholar
  58. 58.
    Bonet J., Wood R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  59. 59.
    Böl, M.: Numerische Simulation von Polymernetzwerken mit Hilfe der Finite-Elemente-Methode. Ph.D. thesis, Ruhr-University Bochum, Germany (2005)Google Scholar
  60. 60.
    Thomas A.G.: The departures from the statistical theory of rubber elasticity. Trans. Faraday Soc. 51, 569–582 (1955)CrossRefGoogle Scholar
  61. 61.
    Swanson S.R., Christensen L.W., Ensign M.: Large deformation finite element calculations for slightly compressible hyperelastic materials. Comput. Struct. 21, 81–88 (1985)CrossRefGoogle Scholar
  62. 62.
    Biderman V.L.: Calculation of Rubber Parts (in Russian). Rascheti na Prochnost, Moscow (1958)Google Scholar
  63. 63.
    Kratky O., Porod G.: Röntgenuntersuchung gelöster Fadenmoleküle. Recl. Trav. Chim. Pay-B 68, 1106–1122 (1949)CrossRefGoogle Scholar
  64. 64.
    Cohen A.: A Padé approximant to the inverse Langevin function. Rheol. Acta 30, 270–273 (1991)CrossRefGoogle Scholar
  65. 65.
    Kuhn W.: Über die Gestalt fadenförmiger Moleküle in Lösungen. Kolloid Z. 68, 2–15 (1942)Google Scholar
  66. 66.
    Miehe C., Göktepe S.: . J. Mech. Phys. Solids 53, 2231–2258 (2005)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Bažant Z.P., Oh B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Nah C., Lee G.B., Lim J.Y., SenGupta R., Gent A.N.: Problems in determining the elastic strain energy function for rubber. Int. J. Non-Linear Mech. 45, 232–235 (2010)CrossRefGoogle Scholar
  69. 69.
    Fossum A.F.: Parameter estimation for an internal variable model using nonlinear optimization and analytical/numerical response sensitivities. J. Eng. Mater. Trans. ASME 119, 337–345 (1997)CrossRefGoogle Scholar
  70. 70.
    Ekh M.: Thermo-elastic-viscoplastic modeling of IN792. J. Mech. Behav. Mater. 12, 359–387 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Paul Steinmann
    • 1
  • Mokarram Hossain
    • 1
  • Gunnar Possart
    • 1
  1. 1.University of Erlangen-NurembergErlangenGermany

Personalised recommendations