Archive of Applied Mechanics

, Volume 82, Issue 2, pp 267–282 | Cite as

Classical and generalized coupled thermoelasticity analysis in one-dimensional layered media

  • S. K. Hosseini ZadEmail author
  • A. Komeili
  • M. R. Eslami
  • S. Fariborz


The behavior of thermoelastic waves at the interface of layered medium and distributions of these waves through the domain are examined by applying the direct finite element method to obtain the field variables directly within the spatial and temporal domains. The analysis is performed in a one-dimensional domain with two different layers to provide a means to follow the behavior of the reflected thermoelastic waves at the interface. It appears that the distributions of thermoelastic waves in an isotropic slab with one layer are significantly different from those in multilayered slabs. For instance, the negative displacement waves, several stresses with positive or negative signs and temperature distributions produced in the multilayered domains, are quite different from those in a single layer. This method may be generalized to simulate the propagation of thermoelastic waves in various multilayered regions and analyze the behavior of the layered composite structures under the mechanical or thermal impact loads.


Layered media Impact loading Wave propagation Coupled thermoelasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bufler H.: Theory of elasticity of a multilayered medium. J. Elast. 1, 125–143 (1971)CrossRefGoogle Scholar
  2. 2.
    Bahar L.Y.: Transfer matrix approach to layered systems. ASCE J. Eng. Mech. Div. 98, 1159–1172 (1972)Google Scholar
  3. 3.
    Bahar L.Y., Hetnarski R.B.: Coupled thermoelasticity of a layered medium. J. Therm. Stress. 3, 141–152 (1980)CrossRefGoogle Scholar
  4. 4.
    Thangjitham S., Choi H.J.: Thermal stresses in a multilayered anisotropic medium. ASME J. Appl. Mech. 58, 1021–1027 (1991)zbMATHCrossRefGoogle Scholar
  5. 5.
    Small J.C., Booker J.R.: Finite layer analysis of layered elastic materials using a flexibility approach. Part 1-strip loadings. Int. J. Numer. Methods Eng. 20, 1025–1037 (1984)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kausel E., Seale S.H.: Static loads in layered halfspaces. ASME J. Appl. Mech. 54, 403–408 (1987)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chen T., Jang H., Tseng A.A.: Transient thermal stresses in a multilayered anisotropic medium. ASME J. Appl. Mech. 117, 1067–1069 (1995)CrossRefGoogle Scholar
  8. 8.
    Cetinkaya C., Li C.: Propagation and localization of longitudinal thermoelastic waves in layered structures. J. Vib. Acoust. 122, 263–271 (2000)CrossRefGoogle Scholar
  9. 9.
    Ignaczak J.: Plane harmonic waves in a microperiodic layered infinite thermoelastic solid. J. Therm. Stress. 26, 1033– 1054 (2003)CrossRefGoogle Scholar
  10. 10.
    Baczynski Z.F.: Dynamic thermoelastic processes in microperiodic composites. J. Therm. Stress. 26(1), 55–66 (2003)CrossRefGoogle Scholar
  11. 11.
    Sinha A.N., Sinha S.B.: Reflection of thermoelastic waves at a solid half-space with thermal relaxation. J. Phys. Earth 22, 237–244 (1974)CrossRefGoogle Scholar
  12. 12.
    Sinha S.B., Elsibai K.A.: Reflection of thermoelastic waves at a solid half-space with two thermal relaxation times. J. Therm. Stress. 19, 763–777 (1996)CrossRefGoogle Scholar
  13. 13.
    Sinha S.B., Elsibai K.A.: Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two thermal relaxation times. J. Therm. Stress. 20, 129–146 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Abd-alla A.N., Al-dawy A.A.S.: The reflection phenomena of SV waves in a generalized thermoelastic medium. Int. J. Math. Math. Sci. 23, 529–546 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sharma J.N., Kumar V., Chand D.: Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Therm. Stress. 26, 925–942 (2003)CrossRefGoogle Scholar
  16. 16.
    Singh B.: Reflection of P and SV waves from free surface of an elastic solid with generalized thermodiffusion. J. Earth Syst. Sci. 114, 159–168 (2005)CrossRefGoogle Scholar
  17. 17.
    Singh B.: Wave propagation in a generalized thermoelastic material with voids. Appl. Math. Comput. 189, 698–709 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hetnarski R.B., Eslami M.R.: Thermal stresses-advanced theory and applications. Springer Series: Solid Mech. Appl 158, 413–497 (2009)Google Scholar
  19. 19.
    Bagri A., Taheri H., Eslami M.R., Fariborz S.: Generalized coupled thermoelasticity of a layer. J. Therm. Stress. 29, 359–370 (2006)CrossRefGoogle Scholar
  20. 20.
    Youssef H.M., El-Bary A.A.: Mathematical model for thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity. Comput. Methods Sci. Technol. 12(2), 165–171 (2006)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. K. Hosseini Zad
    • 1
    Email author
  • A. Komeili
    • 1
  • M. R. Eslami
    • 1
  • S. Fariborz
    • 1
  1. 1.Mechanical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations