Advertisement

Archive of Applied Mechanics

, Volume 81, Issue 12, pp 1935–1952 | Cite as

A general analytic solution for plane strain bending under tension for strain-hardening material at large strains

  • Sergei AlexandrovEmail author
  • Ken-ichi Manabe
  • Tsuyoshi Furushima
Original

Abstract

A new analytic solution for plane strain bending under tension of a sheet is proposed for elastic-plastic, isotropic, incompressible, strain-hardening material at large strains. Numerical treatment is only necessary to calculate ordinary integrals and solve transcendental equations. No restriction is imposed on the hardening law. All governing equations and boundary conditions are exactly satisfied. The only exception is that the actual stress distribution over the ends of the sheet is replaced with a concentrated force and a concentrated bending moment. The through-thickness distribution of residual stresses and a measure of springback are also found. The range of validity of the solution is determined. An illustrative example is provided for Swift’s hardening law.

Keywords

Bending under tension Strain hardening Large strains Residual stresses Analytic solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)zbMATHGoogle Scholar
  2. 2.
    Dadras P., Majless S.A.: Plastic bending of work hardening materials. Trans. ASME J. Eng. Ind. 104, 224–230 (1982)CrossRefGoogle Scholar
  3. 3.
    Verguts H., Sowerby R.: The pure plastic bending of laminated sheet metals. Int. J. Mech. Sci. 17, 31–51 (1975)CrossRefGoogle Scholar
  4. 4.
    Tan Z., Persson B., Magnusson C.: Plastic bending of anisotropic sheet metals. Int. J. Mech. Sci. 37, 405–421 (1995)zbMATHCrossRefGoogle Scholar
  5. 5.
    Eason G.: Elastic-plastic bending of a compressible curved bar. Appl. Sci. Res. 9, 53–63 (1960)CrossRefGoogle Scholar
  6. 6.
    Denton A.A.: Plane strain bending with work hardening. J. Strain. Anal. 1, 196–203 (1966)CrossRefGoogle Scholar
  7. 7.
    Wang C., Kinzel G., Altan T.: Mathematical modeling of plane-strain bending of sheet and plate. J. Mater. Process. Technol. 39, 279–304 (1993)CrossRefGoogle Scholar
  8. 8.
    Dadras P.: Plane strain elastic-plastic bending of a strain-hardening curved beams. Int. J. Mech. Sci. 43, 39–56 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chakrabarty J., Lee W.B., Chan K.C.: An exact solution for the elastic/plastic bending of anisotropic sheet under conditions of plane strain. Int. J. Mech. Sci. 43, 1871–1880 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Arslan E., Eraslan A.N.: Analytical solution to the bending of a nonlinearly hardening wide curved bar. Acta Mech. 210, 71–84 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gao X.-L.: Finite deformation elasto-plastic solution for the pure bending problem of a wide plate of elastic linear-hardening material. Int. J. Solids Struct. 31, 1357–1376 (1994)zbMATHCrossRefGoogle Scholar
  12. 12.
    Zhu H.X.: Large deformation pure bending of an elastic plastic power-law-hardening wide plate: analysis and application. Int. J. Mech. Sci. 49, 500–514 (2007)CrossRefGoogle Scholar
  13. 13.
    Alexandrov S., Kim J.-H., Chung K., Kang T.-J.: An alternative approach to analysis of plane-strain pure bending at large strains. J. Strain Anal. Eng. Des. 41, 397–410 (2006)CrossRefGoogle Scholar
  14. 14.
    Lyamina E.A.: Plastic bending of a strip for a yield criterion depending on the mean stress. J. Appl. Mech. Tech. Phys. 47, 249–253 (2006)CrossRefGoogle Scholar
  15. 15.
    Alexandrov S., Hwang Y.-M.: The bending moment and springback in pure bending of anisotropic sheets. Int. J. Solids Struct. 46, 4361–4368 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Alexandrov S., Hwang Y.-M.: Plane strain bending with isotropic strain hardening at large strains. Trans. ASME J. Appl. Mech. 77, 064502 (2010)CrossRefGoogle Scholar
  17. 17.
    Bruhns O.T., Gupta N.K., Meyers A.T.M., Xiao H.: Bending of an elastoplastic strip with isotropic and kinematic hardening. Arch. Appl. Mech. 72, 759–778 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Yoshida M., Yoshida F., Konishi H., Fukumoto K.v.: Fracture limits of sheet metals under stretch bending. Int. J. Mech. Sci. 47, 1885–1896 (2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    Parsa M.H., Ahkami S.N.A.: Bending of work hardening sheet metals subjected to tension. Int. J. Mater. Form Suppl. 1, 173–176 (2008). doi: 10.1007/s12289-008-0019-y CrossRefGoogle Scholar
  20. 20.
    Guler M.A., Ozer F., Yenice M., Kaya M.: Springback prediction of DP600 steels for various material models. Steel Res. Int. 81, 801–804 (2010)Google Scholar
  21. 21.
    Xiao H., Bruhns O.T., Meyers A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Rees D.W.A.: Basic Engineering Plasticity. Butterworth-Heinemann, Oxford (2006)Google Scholar
  23. 23.
    Sakaki S., Kanai F., Miyagawa M.: In-plane bending process with axial tension on aluminium strips. J. JSTP 25, 1027–1033 (1984)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sergei Alexandrov
    • 1
    Email author
  • Ken-ichi Manabe
    • 2
  • Tsuyoshi Furushima
    • 2
  1. 1.A.Yu. Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Mechanical EngineeringTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations