Skip to main content
Log in

On the unsteady rotational flow of a generalized Maxwell fluid through a circular cylinder

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the velocity field and the associated tangential stress corresponding to the rotational flow of a generalized Maxwell fluid within an infinite circular cylinder are determined by means of the Laplace and finite Hankel transforms. Initially, the fluid is at rest, and the motion is produced by the rotation of the cylinder about its axis with a unsteady angular velocity. The solutions that have been obtained are presented under series form in terms of the generalized G a,b,c (, t)-functions. The similar solutions for the ordinary Maxwell and Newtonian fluids, performing the same motion, are obtained as special cases, when β → 1, respectively β → 1 and λ → 0, from general solutions. Finally, the solutions that have been obtained are compared by graphical illustrations, and the influence of the pertinent parameters on the fluid motion is also underlined by graphical illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu Z.S., Lin J.Z.: Numerical research on the coherent structure in the viscoelastic second-order mixing layers. Appl. Math. Mech. 8, 717–723 (1998)

    Google Scholar 

  2. Ting T.W.: Certain non-steady flows of second-order fluids. Arch. Ration. Mech. Anal 14, 1–23 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Srivastava P.H.: Non-steady helical flow of a visco-elastic liquid. Arch. Mech. Stos. 18, 145–150 (1966)

    Google Scholar 

  4. Waters N.D., King M.J.: Unsteady flow of an elastico-viscous liquid in a straight pipe of ciscular cross-section. J. Phys. D: Appl. Phys. 4, 207–211 (1971)

    Article  Google Scholar 

  5. Bandelli R., Rajagopal K.R.: Start-up flows of second grade fluids in domains with one finite dimension. Int. J. Non-Linear Mech. 30, 817–839 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandelli R., Rajagopal K.R., Galdi G.P.: On some unsteady motions of fluids of second grade. Arch. Mech. 47, 661–676 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Erdogan M.E.: On unsteady motion of a second grade fluid over a plane wall. Int. J. Non-linear Mech. 38, 1045–1051 (2003)

    Article  MATH  Google Scholar 

  8. Sajid M., Hayat T., Asghar S., Vajravelu K.: Analytic solution for axisymmetric flow over a nonlinearly stretching sheet. Arch. Appl. Mech. 78, 127–134 (2008)

    Article  MATH  Google Scholar 

  9. Fetecau Corina, Fetecau C., Imran M.: Axial Couette flow of an Oldroyd-B fluid due to a time-dependent shear stress. Math. Rep. 11(61), 145–154 (2009)

    MathSciNet  Google Scholar 

  10. Khan M., Hyder Ali S., Fetecau C.: Exact solutions of accelerated flows for a Burgers fluid Case-II. ZAMP 60(4), 701–722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fetecau, Corina, Imran, M., Fetecau, C., Burdujan, I.: Helical flow of an Oldroyd-B fluid due to a circular cylinder subject to time-dependent shear stresses. ZAMP. doi:10.1007/s00033-009-0038-7

  12. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  13. Magin R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  14. Mainardi F., Luchko Yu., Pagnini G.: The fundamental solution of the space time fractional diffusion equation. Frac. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Agrawal O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tarasov V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323(11), 2756–2778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herzallah M.A.E., El-Sayed A.M.A., Baleanu D.: Perturbation for fractional-order evolution equation. Nonlinear Dyn. 62, 593–600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific Press, Singapore (2000)

    Book  MATH  Google Scholar 

  19. Soczkiewicz E.: Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust. 23, 397–404 (2002)

    Google Scholar 

  20. Bagley R.L.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  21. Qi H., Xu M.: Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mech. Res. Commun. 34, 210–212 (2007)

    Article  MATH  Google Scholar 

  22. Khan M., Wang S.: Flow of a generalized second grade fluid between two side walls perpendicular to a plate with fractional derivative model. Nonlinear Anal. Real World Appl. 10, 203–208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang S., Xu M.: Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal. Real World Appl. 10, 1087–1096 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vieru D., Fetecau C., Athar M., Fetecau C.: Flow of a generalized Maxwell fluid induced by a constantly accelerating plate between two side walls. ZAMP 60/2, 334–343 (2009)

    Article  MathSciNet  Google Scholar 

  25. Germant A.: On fractional differentials. Phil. Mag. 25, 510–519 (1938)

    Google Scholar 

  26. Bagley R.L., Torvik P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  27. Makris N., Dargush G.F., Constantinou M.C.: Dynamic analysis of generalized viscoelastic fluids. J. Eng. Mech. 119, 1663–1679 (1993)

    Article  Google Scholar 

  28. Srivastava P.N.: Non-steady helical flow of a visco-elastic liquid. Arch. Mech. Stos. 18, 145–150 (1966)

    Google Scholar 

  29. Truesdell C., Noll W.: The Non-linear Field Theories of Mechanics, Handbuch der Physik, vol. III/3. Springer, Berlin-Heidelberg-New York (1965)

    Google Scholar 

  30. Fetecau C., Fetecau Corina: Unsteady helical flows of a Maxwell fluid. Proc. R. Acad. Ser. A 5(1), 13–19 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Podlubny I.: Fractional Differential Equations. Academic press, San Diego (1999)

    MATH  Google Scholar 

  32. Tong D., Liu Y.: Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Int. J. Eng. Sci. 43, 281–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lorenzo, C.F., Hartley, T.T.: Generalized functions for the fractional calculus, NASA/TP-1999-209424/REV1, (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imran, M., Athar, M. & Kamran, M. On the unsteady rotational flow of a generalized Maxwell fluid through a circular cylinder. Arch Appl Mech 81, 1659–1666 (2011). https://doi.org/10.1007/s00419-011-0509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0509-0

Keywords

Navigation