Archive of Applied Mechanics

, Volume 81, Issue 10, pp 1365–1391 | Cite as

Theory of thin thermoelastic rods made of porous materials

  • Mircea BîrsanEmail author
  • Holm Altenbach


In this paper, we consider thin rods modeled by the direct approach, in which the rod-like body is regarded as a one-dimensional continuum (i.e., a deformable curve) with a triad of rigidly rotating orthonormal vectors attached to each material point. In this context, we present a model for porous thermoelastic curved rods, having natural twisting and arbitrary shape of cross-section. To describe the porosity, we employ the theory of elastic materials with voids. The basic laws of thermodynamics are applied directly to the one-dimensional continuum, and the nonlinear governing equations are established. We formulate the constitutive equations and determine the structure of constitutive tensors. We prove the uniqueness of solution to the boundary-initial-value problem associated with the deformation of porous thermoelastic rods in the framework of linear theory. Then, we show the decoupling of the bending-shear and extension-torsion problems for straight porous rods. Using a comparison with three-dimensional equations, we identify and give interpretations to the relevant fields introduced in the direct approach. Finally, we consider the case of orthotropic materials and determine the constitutive coefficients for deformable curves in terms of three-dimensional constitutive constants by means of comparison between simple solutions obtained in the two approaches for porous thermoelastic rods.


Theory of rods Thermoelasticity Materials with pores Uniqueness of solution Orthotropic behavior Effective stiffness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Svetlitsky V.A.: Statics of Rods. Springer, Berlin (2000)zbMATHGoogle Scholar
  2. 2.
    Hodges D.H.: Nonlinear Composite Beam Theory. Amer. Inst. Aeron. Astron. Inc., Reston (2006)Google Scholar
  3. 3.
    Trabucho L., Viaño J.M.: Mathematical modelling of rods. In: Ciarlet, P.G., Lions, J.L. (eds) Handbook of Numerical Analysis, vol. 4, pp. 487–974. North Holland, Amsterdam (1996)Google Scholar
  4. 4.
    Tiba D., Vodak R.: A general asymptotic model for Lipschitzian curved rods. Adv. Math. Sci. Appl. 15, 137–198 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Freddi L., Morassi A., Paroni R.: Thin-walled beams: a derivation of Vlassov theory via Γ–convergence. J. Elast. 86, 263–296 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Meunier N.: Recursive derivation of one-dimensional models from three-dimensional nonlinear elasticity. Math. Mech. Solids 13, 172–194 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cosserat E., Cosserat F.: Théorie des corps déformables. A. Herman et Fils, Paris (1909)Google Scholar
  8. 8.
    Green A.E., Naghdi P.M.: On thermal effects in the theory of rods. Int. J. Solids Struct. 15, 829–853 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Antman S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)zbMATHGoogle Scholar
  10. 10.
    Rubin M.B.: Cosserat Theories: Shells, Rods, and Points. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  11. 11.
    Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Altenbach H., Naumenko K., Zhilin P.A.: A direct approach to the formulation of constitutive equations for rods and shells. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications., pp. 87–90. Taylor and Francis, London (2006)Google Scholar
  13. 13.
    Zhilin P.A.: Nonlinear theory of thin rods. In: Indeitsev, D.A., Ivanova, E.A., Krivtsov, A.M. (eds) Advanced Problems in Mechanics, vol. 2, pp. 227–249. Instit. Problems Mech. Eng. R.A.S. Publ., St. Petersburg (2006)Google Scholar
  14. 14.
    Zhilin P.A.: Applied Mechanics—Theory of Thin Elastic Rods (in Russian). Politekhn. Univ. Publ., St. Petersburg (2007)Google Scholar
  15. 15.
    Altenbach H., Zhilin P.A.: A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11, 107–148 (1988)MathSciNetGoogle Scholar
  16. 16.
    Altenbach H.: An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct. 37, 3503–3520 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Altenbach H., Eremeyev V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78, 775–794 (2008)zbMATHCrossRefGoogle Scholar
  18. 18.
    Altenbach H., Eremeyev V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204, 137–154 (2009)zbMATHCrossRefGoogle Scholar
  19. 19.
    Nunziato J.W., Cowin S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Cowin S.C., Nunziato J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)zbMATHCrossRefGoogle Scholar
  21. 21.
    Capriz G., Podio-Guidugli P.: Materials with spherical structure. Arch. Ration. Mech. Anal. 75, 269–279 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Capriz G.: Continua with Microstructure. Springer, New York (1989)zbMATHGoogle Scholar
  23. 23.
    Ieşan D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)CrossRefGoogle Scholar
  24. 24.
    Bîrsan M.: A bending theory of porous thermoelastic plates. J. Therm. Stress. 26, 67–90 (2003)CrossRefGoogle Scholar
  25. 25.
    Ciarletta M., Chiriţă S.: On some growth-decay results in thermoelasticity of porous media. J. Therm. Stress. {\bf 29cedil;, 905–924 (2006)CrossRefGoogle Scholar
  26. 26.
    Bîrsan M.: On a thermodynamic theory of porous Cosserat elastic shells. J. Therm. Stress. 29, 879–899 (2006)CrossRefGoogle Scholar
  27. 27.
    White J.E.: Biot-Gardner theory of extensional waves in porous rods. Geophysics 51, 742–745 (1986)CrossRefGoogle Scholar
  28. 28.
    Bychkov A.A., Karpinskii D.N.: Analysis of the conditions of necking in a porous rod subjected to tension. Strength Mater. 30, 274–281 (1998)CrossRefGoogle Scholar
  29. 29.
    Moakher M., Maddocks J.H.: A double-strand elastic rod theory. Arch. Ration. Mech. Anal. 177, 53–91 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zhilin P.A.: Applied Mechanics—Foundations of Shell Theory (in Russian). Politekhn. Univ. Publ., St. Petersburg (2006)Google Scholar
  31. 31.
    Lurie A.I.: Theory of Elasticity. Springer, Berlin (2005)CrossRefGoogle Scholar
  32. 32.
    Altenbach J., Altenbach H.: Einführung in die Kontinuumsmechanik. Teubner, Stuttgart (1994)Google Scholar
  33. 33.
    Goodman M.A., Cowin S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Toupin R.A.: Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Jenkins J.T.: Static equilibrium of granular materials. J. Appl. Mech. 42, 603–606 (1975)CrossRefGoogle Scholar
  37. 37.
    Cowin S.C., Goodman M.A.: A variational principle for granular materials. ZAMM 56, 281–286 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Cowin S.C., Leslie F.M.: On kinetic energy and momenta in Cosserat continua. ZAMP 31, 247–260 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Bîrsan, M., Altenbach H.: On the theory of porous elastic rods. Int. J. Solids Struct. (2010, in press). doi: 10.1016/j.ijsolstr.2010.11.022
  40. 40.
    Carlson D.E.: Linear thermoelasticity. In: Flügge, W. (eds) Handbuch der Physik, vol. VI a/2, pp. 297–346. Springer, Berlin (1972)Google Scholar
  41. 41.
    Ieşan D.: Thermal effects in orthotropic porous elastic beams. Z. Angew. Math. Phys. (ZAMP) 60, 138–153 (2009)zbMATHCrossRefGoogle Scholar
  42. 42.
    Ieşan D.: Classical and Generalized Models of Elastic Rods. Chapman & Hall/CRC Press, Boca Raton, London (2009)zbMATHGoogle Scholar
  43. 43.
    Ieşan D., Scalia A.: On the deformation of functionally graded porous elastic cylinders. J. Elast. 87, 147–159 (2007)zbMATHCrossRefGoogle Scholar
  44. 44.
    Puri P., Cowin S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985)zbMATHCrossRefGoogle Scholar
  45. 45.
    Gradshteyn I.S., Ryzhik I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity “A.I. Cuza” of IaşiIasiRomania
  2. 2.Department of Engineering SciencesMartin-Luther UniversityHalle (Saale)Germany

Personalised recommendations