Archive of Applied Mechanics

, Volume 80, Issue 10, pp 1177–1195 | Cite as

An extendable poroelastic plate formulation in dynamics

  • Loris Nagler
  • Martin SchanzEmail author


A strategy is presented, which allows deriving poroelastic plate formulations of any desired level of approximation. Starting point are the governing three-dimensional (3D) equations of poroelasticity in frequency domain developed by Biot. In order to reduce the dimension of the problem from 3D to 2D, all unknown quantities are approximated by series expansions in thickness direction. This avoids the need for any engineering assumptions. The reduction in the dimension can then be achieved by an integration over the thickness. After truncating the series, a special plate formulation is retrieved. Results are presented for a square, clamped plate which show excellent agreement with the solution of the 3D equations and a considerable saving in computation time.


Poroelasticity Biot’s theory Plate formulation Series expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atalla N., Panneton R., Debergue P.: A mixed displacement-pressure formulation for poroelastic materials. J. Acous. Soc. Am. 104(3), 1444–1452 (1998)CrossRefGoogle Scholar
  2. 2.
    Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefGoogle Scholar
  3. 3.
    Biot M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Biot M.A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27(5), 459–467 (1956)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I/II. Lower/Higher frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonnet G., Auriault J.L.: Dynamics of saturated and deformable porous media: homogenization theory and determination of the solid-liquid coupling coefficients, pp. 306–316. Springer, Berlin (1985) Physics of Finely Divided MatterGoogle Scholar
  7. 7.
    Braess D.: Finite elemente. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cederbaum G., Li L., Schulgasser K.: Poroelastic structures. Elsevier Science, Amsterdam (2000)Google Scholar
  9. 9.
    Detournay, E., Cheng, A.H.D.: Fundamentals of poroelasticity, comprehensive rock engineering, vol. 2, pp. 113–171. Pergamon Pressm, Oxford (1993)Google Scholar
  10. 10.
    Hughes T.J.R.: The finite element method—linear static and dynamic finite element analysis. Dover Publications Inc, New York (1987)zbMATHGoogle Scholar
  11. 11.
    Johnson D., Koplik J., Dashen R.: Theory of dynamic permeability and tortuosity in fluid saturated porous media. J. Fluid Mech. 176, 379–402 (1987)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kienzler R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kienzler, R.: On consistent second-order plate theories. In: Theories of plates and shells: critical review and new applications (Lecture Notes in Applied and Computational Mechanics), vol. 16, pp. 85–96. Springer (2004)Google Scholar
  14. 14.
    Kirk B., Peterson J.W., Stogner R.H., Carey G.F.: libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)CrossRefGoogle Scholar
  15. 15.
    Leclaire P., Horoshenkov K.V., Cummings A.: Transverse vibrations of a thin rectangular porous plate saturated by a fluid. J. Sound Vib. 247(1), 1–18 (2001)CrossRefGoogle Scholar
  16. 16.
    Lewis R.W., Schrefler B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media. 2nd edn. Wiley, New York (1998)zbMATHGoogle Scholar
  17. 17.
    Mindlin R.D.: An Introduction to the Mathematical Theory of Vibration of Elastic Plates. World Scientific Publishing Co. Pte. Ltd, London (2006)CrossRefGoogle Scholar
  18. 18.
    Preußer G.: Eine systematische Herleitung verbesserter Plattengleichungen. Arch. Appl. Mech. 54(1), 51–61 (1984)zbMATHGoogle Scholar
  19. 19.
    Schanz M., Pryl D.: Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua. Int. J. Solids Struct. 41(15), 4047–4073 (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Taber L.A.: A theory for transverse deflection of poroelastic plates. J. Appl. Mech. 59, 628–634 (1992)zbMATHCrossRefGoogle Scholar
  21. 21.
    Theodorakopoulos D.D., Beskos D.E.: Flexural vibrations of poroelastic plates. Acta Mech. 103, 191–203 (1994)zbMATHCrossRefGoogle Scholar
  22. 22.
    Wilmanski K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated material. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Applied MechanicsGraz University of TechnologyGrazAustria

Personalised recommendations